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Abstract

The optic disc(OD) and the optic cup(OC) segmentation is an key step in fundus
medical image analysis. Previously, FCN-based methods have been proposed for medical
image segmentation tasks. However, the consecutive convolution and pooling operations
usually hinder dense prediction tasks which require detailed spatial information, such as
image segmentation. In this paper, we propose a network called Recurrent Fully
Convolution Network(RFC-Net) for automatic joint segmentation of the OD and the
OC, which can captures more high-level information and subtle edge information. The
RFC-Net can minimize the loss of spatial information. It is mainly composed of
multi-scale input layer, recurrent fully convolutional network, multiple output layer and
polar transformation. In RFC-Net, the multi-scale input layer constructs an image
pyramid. We propose four recurrent units, which are respectively applied to RFC-Net.
Recurrent convolution layer effectively ensures feature representation for OD and OC
segmentation tasks through feature accumulation. For each multiple output image, the
multiple output cross entropy loss function is applied. To better balance the cup ratio of
the segmented image, the polar transformation is used to transform the fundus image
from the cartesian coordinate system to the polar coordinate system. We evaluate the
effectiveness and generalization of the proposed method on the DRISHTI-GS1 dataset.
Compared with the original FCN method and other state-of-the-art methods, the
proposed method achieves better segmentation performance.

1 Introduction 1

The optic disc(OD) and the optic cup(OC) segmentation is often an indispensable work 2

in medical image analysis [1]. However, the division of the OD and the OC is a very 3

time-consuming task that is currently only performed by professionals. Therefore, the 4

use of computers to automatically segment the OD and the OC is attractive because the 5

computer is more objective and faster than the human segmentation. In the retinal 6

fundus image, it is very necessary to use the deep learning method to automatically 7

segment OD and OC, which is regarded as one of the most fundamental tasks in this 8

field [3]. It helps to quantify clinical measures about the retinal related diseases, and 9

provides a basis for accurate diagnosis by doctors [2]. For example, OD and OC 10

segmentation plays a key role in the calculation of vertical cup-to-disk ratio (CDR) [2]. 11

In two-dimensional color fundus image, the OD can be divided into two regions: The 12

peripheral region which is the edge of the nerve retina and the OC exhibiting as a pit in 13

centre [8], as shown in Fig 1. 14

August 3, 2020 1/20



Fig 1. Introduction of OD and OC area. (a) shows the structure of the optic
nerve head. (b) shows the optic disc and cup structure.

The remaining of this paper is organized as follows: In Section 2, we introduce 15

related work. Section 3 introduces the theory and structure of RFC-Net network. 16

Section 4 gives our experiment result, including the introduction to the Drishti-GS1 17

dataset, and the experiment settings. Section 5 is the discussion part. We did an 18

ablation experiment between modules. Finally, we make our conclusion in Section 6. 19

By studying the relevant theories and methods of deep learning for assisted diagnosis 20

of retinal images, and using the powerful feature learning capabilities of deep 21

convolutional neural networks to segment the diseased tissue in retinal images, many 22

problems in assisted diagnosis of the retina can be effectively solved. Efficient and 23

stable automatic retinal image segmentation technology can greatly liberate medical 24

resources and reduce the workload of medical personnel, and at the same time provide 25

medical personnel with valuable medical image references. 26

The challenge of joint OD and OC segmentation is how to learn an efficient 27

segmentation model with good performance. This paper focuses on the research to 28

improve the accuracy of OD and OC segmentation models, including research on 29

reducing the amount of model parameters, improving the receptive field of the model, 30

and understanding the context. We propose a model based on recurrent fully 31

convolutional network, named RFC-Net. This model extends FCN by adding simple 32

and effective recurrent convolution blocks to optimize the segmentation results. First, 33

we consider the RFC-Net architecture as an encoder-decoder architecture. The work of 34

the encoder is to compress the feature map, and the original feature map quality is 35

reduced. The work of the decoder is to decompress the feature map, using a file with a 36

small amount of information but containing all the key information to restore the 37

original feature map. Therefore, the RFC-Net can spontaneously summarize the essence 38

of the original feature map and improve the resolution of the feature map. The 39

recurrent block increases the network depth while keeping the number of adjustable 40

parameters unchanged through weight sharing. This is consistent with the purpose of 41

the current CNN architecture [20,27,38]: Using relatively few parameters for more 42

in-depth research. At the same time, we further explored the spatial pyramid model and 43

applied it to RFC-Net. The spatial pyramid model not only extracts multi-scale context 44

information from objects, but also does not require additional learning weights. For 45

each multiple output image, the multiple output cross entropy loss function is applied. 46

To better balance the cup ratio of the segmented image, the polar transformation is 47

used to further improve the segmentation performance. 48

In summary, there are five contributions in our paper: 49

1. Recurrent Fully Convolution Network (RFC-Net), for automatic joint 50

segmentation of optic disc and cup was proposed. 51

2. Four new recurrent units are introduced for the OD and OC segmentation, which 52

are respectively applied to RFC-Net. Different units are generated and compared 53

for comparative analysis. StackRecurrentUnits gets the best results. 54

3. With help of multi-scale input and multiple output, the segmentation performance 55

is effectively improved. The multi-label cross entropy loss function is applied to 56

the image by each multiple output. 57

4. Because the proportion of the OC of the segmented image is not balanced, the 58

polar transformation is used to transform the fundus image from the cartesian 59

coordinate system to the polar coordinate system. With help of polar 60

transformation, the segmentation performance is improved. 61
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5. Compared with the existing methods, the proposed method achieves better 62

segmentation performance. In the segmentation effect of OD and OC, the F1 are 63

0.9787 and 0.9058, respectively. The BLE are 3.96 pixels and 15.40 pixels, 64

respectively. 65

2 Related Works 66

At present, the segmentation methods of the OD and OC are mainly divided into the 67

following categories: Shape-based and template matching methods [10,12,13], models 68

based on deformable and active contours [14,16,17], and the recent deep learning 69

methods [4, 11,15,18–26,41,42]. We briefly outline the existing methods below. 70

Shape-based and template matching methods: Since the shape of the OD 71

area in the retinal image can be seen as an ellipse, it is brighter than other surrounding 72

areas. These methods try to use elliptic curves to fit the OD area [10,12,13]. In [10], 73

ellipse fitting and wavelet transform are used to realize automatic OD positioning and 74

contour detection. First, Daubechies wavelet transform is used to approximate the OD 75

area, and then the intensity-based template is used to obtain an abstract representation 76

of OD. In [12,13], the OD is simulated as a circular or elliptical object, and the 77

transformed morphology and edge detection technology are used to approximate the OD 78

contour. 79

Deformable-model and active contours based methods: This kind of 80

method transforms the problem of segmenting images into the problem of solving the 81

minimum value of the energy functional by constructing the energy functional. In [14], 82

the author improved and expanded the original method in two aspects, which made the 83

contour deformed to the position with the minimum energy, and self-clustered into the 84

edge point set and the uncertain point set.By updating the combination of local and 85

global information, the model becomes more robust to vascular occlusion, noise, 86

ambiguous edges and fuzzy contour shapes. The study in [16] applied the fast mixed 87

level set model combining the regional and local gradient information to the 88

segmentation of the OD boundary by initializing the detected OD center and the 89

estimated OD radius. The study in [17] proposed an active contour model based on 90

implicit regions, which combines image information from multiple image channels at 91

target region points to resist changes in and around the OD region. 92

Models based on deep learning methods: Deep learning methods [4, 15, 18–26] 93

segment OD and OC by training a large number of data samples to automatically 94

extract features. In [18], OD and OC segmentation using superpixel classification for 95

glaucoma screening is proposed. In [19], an entropy-based sampling technique is 96

introduced to advance the convolution filter to segment the OD and OC from the 97

fundus image. In [20], a network U-Net which relies on the use of data augmentation is 98

proposed, which could use the available annotated samples more efficiently. In [21], a 99

general method based on deep learning for automatic OD and OC segmentation, namely 100

U-Net convolutional neural network, is proposed, which outperforms traditional 101

convolutional networks in terms of the prediction time. In [22], by modeling the depth 102

drop between the OD and OC, a method for jointly segmenting the OD and OC is 103

proposed, which can be used for large-scale screening of glaucoma eye. In [24], a special 104

image segmentation cascade network, Stack-U-Net, is proposed. The Stack-U-Net takes 105

the U-Net networks as building blocks, and it is based on the idea of the iterative 106

refinement. Compared with a single U-Net and the state-of-the-art methods for the 107

investigated tasks, it acheives excellent segmentation performance, without increasing 108

the size of datasets. Later, Fu et al. explores a new M-net structure to joint segment 109

the OD and OC [25]. The DENet structure proposes a collection of four independent 110

neural network flows [26]. In [15], the author proposed a multi-label deep convolutional 111
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network model GL-Net combined with a generative adversarial network to segment OD 112

and OC. It reduces the downsampling factor and effectively alleviates the loss of 113

excessive feature information. In [4], the CE-Net was proposed as a context encoder 114

network that not only captures more advanced information, but also preserves spatial 115

information. These recent deep learning methods have performed well and successfully 116

promoted the study of OD and OC segmentation of fundus images from the perspective 117

of deep learning. In [23], the author uses RACE-Net based on a recurrent neural 118

network to simulate a variable model of generalized level sets that evolve at constant 119

and average curvature speeds. It can clearly simulate the high-level dependence between 120

points on the boundary of an object, maintaining its overall shape, smoothness, or 121

homogeneity of the area inside and outside the boundary. Some work [11, 41, 42] use the 122

recurrent convolutional network to segment the fundus retinal vessels, multi-slice MRI 123

cardiac and video better capturing local features and enriching context dependencies. 124

The recurrent convolutional network can establish a connection between the first layer 125

and each of the other layers.Deformable-model and active contours based methods 126

In summary, the shape-based and template matching methods are more 127

representative in the early stage. However, such methods may collect images with 128

different colors, uneven intensities, and the presence of focus areas, infiltrations, and 129

blood vessels in the OD area, which make these segmentation methods less robust. 130

Deformable-model and active contours based methods are more sensitive to local 131

minimum states, so the global minimum may not be achieved due to noise and focus. In 132

the process of energy minimization, small features are ignored and the convergence 133

strategy has a greater impact on accuracy. The deep convolutional neural network can 134

automatically learn the correlation between the features in the fundus image and is 135

relatively less affected by the lesion. However, for the existing OD and OC 136

segmentation methods based on deep learning, due to the fixed number of network 137

layers, downsampling is generally used to improve the receptive field. When OD and 138

OC are jointly segmented, the OC area on the label map is relatively small. Too large a 139

downsampling factor will cause loss of OC edge information. For a relatively large OD 140

region, the receptive fields of these methods are not large enough, they cannot fully 141

understand the global information, and cannot accurately identify some large segmented 142

regions. Therefore, in order to capture the rich context in the image, we propose a 143

recurrent fully convolutional network model RFC-Net. The concept of recurrent is added 144

to it, and four types of recurrent units are carefully designed to capture more local 145

characteristics and enrich context dependencies. The recurrent convolutional network 146

helps to train the deep architecture. It can expand the receptive field of the model while 147

maintaining the feature relevance, thereby making up for the shortcomings of FCN. 148

3 Recurrent Fully Convolution Network(RFC-Net) 149

In this section, we first introduce the overall framework of our network and then 150

introduce different modules in the RFC-Net. Finally we describe how to best combine 151

them together for further refine the network. 152

3.1 Overview 153

Inspired by the recurrent convolutional network [28] and the FCN [27], we propose a 154

deep learning network for segmentation tasks. The deep FCN called RFC-Net is 155

constructed, which solves the joint segmentation problem between OD and OC. 156

Compared the basic FCN with RFC-Net, RFC-Net mainly has the following 157

improvements: (1) Adding polar transformation, (2) adding multi-scale input modules, 158

(3) four recurrent units are proposed and applied to RFC-Net, and adding skip 159
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connections in RFC-Net, (4) using multiple output fusion to obtain final segmentation 160

results. In this section, we outline the principles and advantages of the used method. 161

Fig 2. The training and testing process.

Our training and testing process is shown in Fig 2. First we use the existing 162

advanced automatic disc detection method YOLOv2 [30] to locate the disc center, and 163

adopt a network framework based on target detection so that the position of the disc 164

can be identified at the same time without prior selection of the region of interest. 165

Perform preprocessing is performed on the detected images. Next, by inputting a 166

fundus retina image into the polar transformation block, the polar transformation block 167

converts the fundus retina image from the cartesian coordinates to the polar coordinate 168

system, and outputs the fundus retina image in the polar coordinate system. Polar 169

transformation further improves the segmentation performance of OD and OC. We 170

down-sample the images in the network, then create a multi-scale input in the encoder 171

path, input feature images in a multi-scale manner, and encode multi-size context 172

information. We use RFC-Net as the main network structure to learn rich hierarchical 173

representations. The output layer is used as an early classifier for generating 174

accompanying local prediction maps of different scale layers. The number of channels of 175

the multiple output image is 32, 64, 128, 256. We scale the multiple output feature map 176

to 3 channels through 3× 3 convolution, and the feature map is finally classified into 177

three categories: 0 corresponds to background, 1 corresponds to OD, and 2 corresponds 178

to OC. A cross entropy loss function is applied to each multiple output layer image, and 179

the output map for each scale is supervised to output better results. Finally, the 180

segmented image is restored to the cartesian coordinate system through the inverse 181

polar transformation and the final segmented image is output. 182

Fig 3. The structure of RFC-Net. Each blue block represents a recurrent
block, each red block represents a 3× 3 convolution, each orange block
represents a 3× 3 deconvolution.

Our proposed model RFC-Net is shown in Fig 3. Each blue bar represents a 183

recurrent block, and each orange and green bar corresponds to a multi-channel feature 184

map, the number in the bar represents the number of kernels. The orange bar uses 3× 3 185

convolution, the green bar uses 3× 3 deconvolution, and the arrows of different colors 186

indicate different operations. First, we improved FCN. In order to solve the problem of 187

insufficient correlation between the model’s receptive field and the features in the 188

standard 3× 3 convolution, we proposed a recurrent block to replace the standard 3× 3 189

convolution. In addition, we tried to stack multiple layers of recurrent convolutions 190

together to obtain a deeper recurrent architecture. Based on this, four variants of 191

recurrent blocks were proposed: RecurrentUnits, StackRecurrentUnits, 192

RecurrentBasicUnits, and StackRecurrentBasicUnits. Second, we use data 193

preprocessing and polar transformation to alleviate the problems of model overfitting 194

and low segmentation accuracy due to the small size of the medical dataset. Third, we 195

replace the downsampling with a convolutional layer with asynchronous length. The 196

resolution of the feature map after each convolution is reduced to 1/2 of the original 197

feature map, alleviating the loss of feature information caused by downsampling. We 198

use deconvolution for upsampling to restore feature information. We use ”skip 199

connection” to connect the recurrent block of the encoder part with the deconvolution 200

of the decoder part, and add the corresponding features in the encoder to the 201

corresponding layer in the decoder, which promotes the fusion of low-level information 202

and high-level information. So that the segmentation feature map obtains complete 203

context information. Forth, in order to speed up convergence and avoid model 204
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overfitting, batch normalization function (BN) is used to normalize the feature map of 205

each layer after the convolution operation of each layer, and then using the ReLU 206

activation function to activate it. 207

3.2 Multi-scale Input 208

Multi-scale input has been shown to be successful in improving segmentation 209

quality [31]. RFC-Net downsamples the image, then it builds a multiscale input in the 210

encoder path. Downsampling a 512× 512 image to form a 256× 256 image, we can get 211

a thumbnail of the original image. This process is repeated three times until the original 212

image becomes a 64× 64 image. Through this process, four types of images with 213

different sizes can be obtained, which are 512× 512, 256× 256, 128× 128, and 64× 64. 214

The four types of images obtained form a pyramid shape, as shown in Fig 3. By 215

multi-scale input layer, a large increase in parameters is avoided effectively, and the 216

network width of the decoder path is increased. 217

3.3 Recurrent Block 218

In this paper, based on RCNN [42], we designed a recurrent block. By combining the 219

recurrent block into each convolutional layer, we make the network more abundant. The 220

innovation of the recurrent block is that four different rekurrent convolution units are 221

proposed. We applied these four different recurrent convolution units to RFC-Net 222

respectively, and designed ablation experiments for verification in the experimental part. 223

Fig 4 shows different variants of the standard convolution unit and the recurrent 224

convolution units. 225

Fig 4. Different variant of standard convolutional and recurrent blocks.
(a)Basic Units, (b)Recurrent Units, (c)Stack Recurrent Units, (d)Recurrent Basic Units,
(e)Stack Recurrent Basic Units, (f)Unfold RCL Layers.

Fig 4 shows different variants of the standard convolutional unit and the recurrent 226

convolution unit. Fig 4(a) is a standard convolution unit, named BasicUnits. The 227

proposed four different recurrent convolution units are shown in Fig 4(b-e). Fig 4(b) is 228

named RecurrentUnits and includes a convolution layer and Recurrent Convolutional 229

Layers (RCL) layer. Compared with the standard 3× 3 convolution, the recurrent block 230

uses RCL to extract image objects from the input layer. RCL does not directly output 231

the input layer elements, but uses a variable recurrent network to process the data. It 232

extracts the data twice and abstracts the elements. This attribute enhances the model’s 233

ability to integrate contextual information, which is important for the edge detail 234

segmentation of OD and OC. In addition, we try to stack RecurrentUnits together to 235

obtain a deeper recurrent architecture. Based on this, StackRecurrentUnits is 236

proposed, which is a stack of two RecurrentUnits, as shown in Fig 4(c). In Fig 4(d), 237

we propose RecurrentBasicUnits. This unit modifies RecurrentUnits and replaces 238

the standard convolutional layer with BasicUnits to further deepen the network. In 239

Fig 4(e), we propose StackRecurrentBasicUnits, which is a stack of two 240

RecurrentBasicUnits. In Fig 4(c) and Fig 4(e), we verify the effect of deep recurrent 241

networks by stacking recurrent layers together to obtain a deeper recurrent layer 242

architecture. In this work we evaluated five different architectures. 243

The key to RecurrentUnits is the RCL layer. The state of the RCL layer develops 244

on discrete time steps, and its unfolding structure is shown in Fig 4(f), where 245

t = 2(0 ∼ 2) refers to the recurrent convolution operation. For the (i, j) unit located on 246

the kth feature map in the RCL, the net output z
(i,j)
k (t) at time step t is given by: 247
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z
(i,j)
k (t) = Sum

[
W x
k x

(i,j)
k (t− 1),W r

k r
(i,j)
k (t)

]
+ bk (1)

Among them, x
(i,j)
k (t− 1) and r

(i,j)
k (t) represent feed-forward and recurrent input, 248

respectively. They are vectorized patches centered on (i, j) on the kth feature map in 249

the previous layer and the current layer. sum[·] stands for element-wise summation. W x
k 250

and W r
k represent vectorized feedforward and recurrent weights, respectively, and bk is 251

bias. The output y
(i,j)
k (t) on the kth feature map in RCL is fed to the standard ReLU 252

activation function
∫

and expressed as: 253

y
(i,j)
k (t) =

∫ (
z
(i,j)
k (t)

)
= max

(
z
(i,j)
k (t), 0

)
(2)

In Fig 4(f), both feed-forward and recurrent connections we designed have local 254

connections and shared weights among different locations. At t = 0, t = 1 and t = 2, the 255

same convolution operation is used, and no additional convolution layer is added. The 256

recurrent connection through weight sharing, it does not need to bring in additional 257

parameters and calculations, and maintains the learning ability to further extract the 258

edge detail information of OD and OC. 259

3.4 Polar Transformation Block 260

Polar transformation is introduced to improve the performance of OD and OC 261

segmentation. Fig 5(a) and (b) represent retinal images in cartesian coordinates. 262

Fig 5(c) and (d) represent retinal images in polar coordinates. Fig 5(b) and (d) are the 263

ground truth. Let q(x, y) denote the point on the plane of the fundus image, where the 264

origin is set to the disc center O(xo, yo). Here, (x, y) takes the cartesian coordinate. 265

q′(θ, r) takes the polar coordinate, r is the radius, θ is the directional angle. The polar 266

transformation is defined as: 267{
x = r cos θ
y = r sin θ

⇔

{
r =

√
x2 + y2

θ = tan−1
y

x

(3)

Fig 5. Polar transformation. (a) and (b) represent retinal images in cartesian
coordinates. (c) and (d) represent retinal images in polar coordinates. In (b) and (d),
where yellow represents OC, red represents OD, and black represents background.

3.5 Multiple Output Cross Entropy Loss Function 268

In our RFC-Net, we introduce the multiple output layers. The advantage of the 269

multiple output layer is that it can backpropagates the loss of each layer output and the 270

loss of the final layer output to the early layer in the decoder path, which not only 271

effectively alleviates the gradient vanishing problem, but also helps to train the model. 272

We apply multipel output cross entropy loss function for each multiple output image. 273

Let’s write X = {xi, i = 1, ..., N} for the original set of input image. N for the number 274

of pixels. Y = {yi, i = 1, ..., N} for the corresponding ground truth of each input image, 275

yi ∈ {0, 1, 2}. Where O is the number of categories, O = 3, 0 corresponds to 276

background, 1 corresponds to OD, and 2 corresponds to OC. V for the probalility, the 277

probability that the ith sample is predicted to be the oth category is vi,o. 278

Assuming that there are M multiple output layers in the network, the corresponding 279

loss weights for each multiple output layer are expressed as αi = {αi, i = 1, ...,M}. 280
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Here, M = 5, and αi = {0.1, 0.1, 0.1, 0.1, 0.6}. For each multiple output image, the loss 281

L(i) is calculated separately. L(i) is defined as: 282

L(i)(Y, V ) = −αi
N

N−1∑
i=0

O−1∑
o=0

yi,o log vi,o (4)

We superimpose the L(M) of each multiple output layer. The final output loss 283

function is L, L is defined as: 284

L =

M−1∑
i=0

L(i)(Y, V ) (5)

4 Experiments And Analysis 285

We made our experiment on the Drishti-GS1 dataset [35]. The training set contains 50 286

images and the testing set contained 51 images. The OD and OC area of all images are 287

marked by 4 ophthalmologists with different clinical experience, we trained the average 288

area marked by 4 experts as a standard OD and OC area. 289

The number of images in the Drishti-GS1 dataset is limited. In response to this 290

problem, we have designed effective data preprocessing, which can not only expand the 291

number of training samples, but also increase the diversity of training samples. First, 292

we use the YOLOv2 [30] model to extract the OD image. Then perform data expansion 293

on the detected image. Images of different sizes are taken based on the center point of 294

the OD, including 400× 400, 500× 500, 550× 550, 600× 600, 650× 650, 700× 700, 295

750× 750, 800× 800, 850× 850, and 900× 900. These images are used to enhance the 296

data. The size of the input image is scaled to the standard 512× 512 when training the 297

network. On the one hand, this data preprocessing method can avoid overfitting, and 298

on the other hand, it will bring about the improvement of model performance. 299

4.1 Implementation 300

We implemented the RFC-Net using the PyTorch deep learning framework [34]. The 301

hardware environment of our laptops includes NVIDIA GeForce GTX 1060 GPU, Intel 302

Core i7-7700HQ CPU@2.80 GHz processor, 32 GB of RAM, and running Linux Ubuntu 303

OS 16.04. All training and testing were performed in the same hardware environment. 304

During the training, RFC-Net uses the Stochastic gradient descent (SGD) 305

optimizer [40]. In our experiment, the training is iterated for a total of 400 epochs. On 306

the setting of the learning rate lr, lr is initialized to 0.0001, the weight attenuation 307

coefficient is 0.0005, and the momentum is 0.9. At the same time, we used the learning 308

rate scheduler, which can achieve good learn preformance without complicated fine-tune 309

the learning rate. Taking 2 sample input models randomly from the training set {xi, yi}, 310

this can reduce the instability of the stochastic gradient. Convolution is used to extract 311

features and restore images using ReLU as an activation function. The size of the 312

output segmentation image is 512× 512× 1. For more details on implementation please 313

refer to our code and logs at https://github.com/HaiCheung/RFCN. 314

4.2 Measurement of the Classificaiton Performance 315

In order to measure the classification performance of the OD/OC segmentation system, 316

we compared the Sensitivity(SEN), Specificity(SPC), Accuracy(ACC), F1 and boundary 317
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distance localization error (BLE) [35]. Sensitivity(SEN), Specificity(SPC) and 318

Accuracy(ACC) are defined as : 319

SEN =
TP

P
(6)

320

SPC =
TN

N
(7)

321

ACC = SEN × P

(P +N)
+ SPC × N

(P +N)
(8)

Measurements of F1, Precision and Recall are also widely used in classification, 322

which are defined as: 323

F1 = 2× Precision×Recall
Precision+Recall

(9)

324

Precision =
TP

TP + FP
(10)

325

Recall =
TP

TP + FN
=
TP

P
(11)

Among them, TP, TN, FP, FN, P and N represent true positive, true negative, false 326

positive, false negative, positive samples and negative samples, respectively. 327

Similarly, BLE is used to evaluate the boundary distance (in pixels) between the 328

edge (C0) of the model segmentation result U(x) and the edge (Cg) of y. BLE is better 329

able to embody the local (boundary) level of segmentation, which are used by 330

the [23,24]. It is defined as: 331

BLE(C0, Cg) = −
1

N

N−1∑
θ=0

√
(dθg)

2 − (dθo)
2 (12)

Here, dθg, d
θ
o denotes the euclidean distance between Cg, C0 and the center point in 332

the direction of θ, respectively, with 24 equidistant points being considered (N = 24). 333

The desirable value for BLE is 0. 334

4.3 Comparative Experiment and Analysis Before and After 335

Polar Transformation 336

During the training phase, we test the effects of data augmentation and polar 337

transformation on model segmentation. 338

Data Augmentation(DA): For each fundus image, the following preprocessing is 339

carried out, including random horizontal flip, random vertical flip, random rotation 340

within the range of [0◦, 360◦], and random cropping. For a image sized in 512× 512, it is 341

cut out randomly by filling 64 pixels on the top, bottom, left and right of each picture. 342

Polar Transformation(PT): By adding polar transition in the network, the effect 343

of using polar transformation on model segmentation accuracy is verified. 344

We apply the BasicUnits proposed in Fig 4(a) to RFC-Net and use it as the main 345

network structure of the experiment. The results of DA and PT for the OD and OC 346

segmentation are compared, which are shown in Table 1. In Table 1, the experiment 347

results showing that DA does not make help to OD and OC segmentation, while PT 348

contriubtes a lot. In the OD and OC segmentation results, compared with the results 349

without DA and PT, the F1 score of PT is increased 3.43% and 15.55%, the BLE is 350

reduced by 5.02 pixels and 9.84 pixels. By applying PT, it helps to avoid over-fitting 351

during model training and further improve the segmentation performance. Therefore, 352

PT is applied in all of the following experiments. 353
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Table 1. Segmentation Results with/without DA and PT.

Method Parament
OD(mean/std) OC(mean/std)
F1 BLE(px) F1 BLE(px)

− 11016684 0.9413/0.018 11.24/3.51 0.7327/0.031 25.38/18.57
DA 11016684 0.9192/0.113 18.54/17.45 0.7982/0.189 26.71/16.97
PT 11016684 0.9756/0.013 6.22/3.29 0.8882/0.116 15.54/6.96

DA+ PT 11016684 0.9735/0.011 6.27/3.32 0.8819/0.079 15.94/6.77

We visually show the changes in the retinal image before and after the polar 354

transformation and the segmentation curve. Fig 6 shows the edge curves of the joint 355

OD and OC segmentation of polar transformation in samples drishtiGS 6, drishtiGS 7, 356

and drishtiGS 100. From Fig 6, we can see two main advantages of polar 357

transformation: (i) Expansion of the OC ratio: Polar transformation increases the OC 358

ratio. Taking the sample drishtiGS 100 as an example, the area of OC in Fig 6(e) is 359

only 4.7%. While in Fig 6(d), the area of OC increases to 24.5%. This will make the 360

area of the OC, OD and background more balanced and greatly assist in segmenting 361

OD and OC. By balancing the area between the OC, OD and background, not only can 362

avoid over-configuration when training the model, but also increase the accuracy of 363

segmenting the OD and OC. (ii) Clearer the space constraints between the OD and the 364

OC: In the original fundus image, the redial relationship between the OD and the OC 365

should be that the OC is inside the OD area, as shown in Fig 6(b). However, this redial 366

relationship is difficult to achieve in the original cartesian coordinate system. The polar 367

transformation shifts this redial relationship to the spatial relationship, as shown in 368

Fig 6(d). Among them, the area of OC, OD, and background shows an ordered layer 369

structure, this layer structure is convenient to use, especially for the segmentation of 370

OD and OC, and the effect is significant. 371

Fig 6. Visualization of the segmentation results before and after using
polar transformation. (a) Fundus retinal image. (b) The optic disc image extracted
from (a). (c) The image after polar transformation. (d) Segmented image in polar
coordinate system. (e) Segmented image in cartesian coordinate system. (f) Restore the
segmented image under the optic disc image from (e). (g) Ground Truth. The green
contour represent the boundary of OD, the blue contour represent the boundary of OC.

We further verified the effectiveness of polar transformation from a statistical point 372

of view, it would make the results more convincing. Taking the BasicUnits proposed in 373

Fig 4(a) as an example, we propose a hypothesis: The performance of BasicUnits using 374

polar transformation is better than BasicUnits not using polar transformation. We 375

conducted a P − value analysis of the F1 indicators and the results are shown in 376

Table 2. The statistical method used SPSS19.0 software to analyze the data, and 377

P − value < 0.05 indicated that the difference was statistically significant. 378

BasicUnits+ PT : BasicUnits represents the comparison between the BasicUnits 379

using polar transformation and the BasicUnits without polar transformation. In 380

Table 2, the P − value of BasicUnits+ PT : BasicUnits is less than 0.05 for OD and 381

OC, which indicates that the BasicUnits+ PT and BasicUnits have statistical 382

significance. In other words, the performance of the BasicUnits using polar 383

transformation is better than the BasicUnits without polar transformation. Therefore, 384

in the subsequent experiments, we all carried out on the basis of adding polar 385

transformation. 386
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Table 2. Comparison of P − value analysis results based on F1 indicators

OD OC
BasicUnits+ PT : BasicUnits BasicUnits+ PT : BasicUnits

P − value 0.007 0.003

4.4 Comparison of Results Before and After Model 387

Improvement 388

In order to verify the efficiency of the proposed structure to improve the model, the 389

effect of the OD and OC segmentation with/without the proposed structure is 390

compared with the different network structures used in this paper. The five structures 391

which proposed in Fig 4 are taken into the RFC-Net of Fig 3 for experiments. The 392

experimental results are shown in Table 3, Table 4, Table 5. 393

Table 3 and Table 4 show the segmentation results of OD and OC on the five 394

evaluation indicators of F1, BLE, ACC, SEN and SPC. Table 5 shows the segmentation 395

results of the joint OD and OC. In Table 3, by comparing the experimental results of 396

these five structures, it is found that the RFC-Net using StackRecurrentUnits has the 397

best effect on the segmentation of OD and OC. Both F1 and BLE evaluation indicators 398

are better than the other four structures of RFC-Net. We observed that 399

StackRecurrentUnits achieved the highest F1 score and the lowest BLE on OD, 400

indicating that it can more accurately subdivide background, OD and OC. Compared 401

with BasicUnits, F-measure increased by 0.31%, and BLE decreased by 2.26 pixels. 402

This proves the effectiveness of StackRecurrentUnits. In Table 4, ACC,SEN and SPC 403

of StackRecurrentUnits reached the highest on OD and OC. In the segmentation 404

results of OD and OC, SEN is 3.61% and 1.57% higher than BasicUnits respectively. 405

In Table 5, the segmentation results of the joint OD and OC also illustrate the 406

effectiveness of StackRecurrentUnits. Through the experimental results, it can be seen 407

that the recurrent block improves the model’s ability to understand local context 408

information and maintains the relevance of feature information in the receptive field, so 409

that the RFC-Net model can more accurately segment OD and OC. In the recurrent 410

block, the segmentation effect of StackRecurrentUnits is the best. Because 411

StackRecurrentUnits contains two RecurrentUnits, it further uses the role of 412

RecurrentUnits to better capture local features and enrich contextual relevance. 413

Therefore, in future work, we will conduct analysis and research based on 414

StackRecurrentUnits. 415

By analyzing the data in Table 3 and Table 4, we found that BasicUnits have 416

insufficient ability to extract features, and the segmentation performance of OD and OC 417

is low. For RecurrentUnits, we added RCL, and the segmentation effect is better than 418

BasicUnits. This proves that we add the recurrent convolution is the correct choice. 419

Because we use weight sharing in RecurrentUnits, compared to BasicUnits, the 420

number of parameters of RecurrentUnits has basically not increased. For 421

RecurrentBasicUnits, the segmentation effect of this structure is not as effective as 422

StackRecurrentUnits. This shows that the method we designed to stack 423

RecurrentUnits is effective, which can make the model learn highly complex features, 424

which is very effective for the edge detail segmentation of OD and OC. Note that the 425

structure of StackRecurrentBasicUnits is more complex and the network is deeper, 426

but the segmentation performance is not as good as StackRecurrentUnits. We 427

attribute this fact to the difficulty of learning such a deep network model. Therefore, we 428

conclude that the sensitivity of standard 3× 3 convolution to weight changes can better 429

adjust the gradient, and recurrent convolution can better capture local features and 430

enrich contextual relevance. However, if the number of recurrent layers is too deep, the 431

network may learn redundant features in continuous convolutions and the problem of 432
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gradient dissipation will occur during the training process, resulting in reduced 433

segmentation performance. By applying StackRecurrentUnits to the RFC-Net 434

network structure, we can more accurately segment the fundus OD and OC images. 435

Table 3. Experiment results at F1 and BLE for the recurrent block in the Fig 4

Recurrent Block Parament
OD(mean/std) OC(mean/std)
F1 BLE(px) F1 BLE(px)

BasicUnits 11016684 0.9756/0.013 6.22/3.29 0.8882/0.116 15.54/6.96
RecurrentUnits 11017628 0.9761/0.014 4.43/2.63 0.8861/0.109 15.39/10.64

StackRecurrentUnits 18883436 0.9787/0.009 3.96/1.79 0.9058/0.118 15.40/11.19
RecurrentBasicUnits 18877548 0.9757/0.011 4.52/2.04 0.8834/0.103 14.37/9.29

StackRecurrentBasicUnits 34599276 0.9781/0.009 4.59/2.56 0.8908/0.094 15.48/11.26

Table 4. Experiment results at ACC, SEN and SPC for the recurrent block in the Fig 4.

Recurrent Block Parament
OD OC

ACC SEN SPC ACC SEN SPC

BasicUnits 11016684 0.9761 0.9217 0.9780 0.9775 0.9625 0.9793
RecurrentUnits 11017628 0.9759 0.9374 0.9784 0.9774 0.9533 0.9788

StackRecurrentUnits 18883436 0.9764 0.9578 0.9787 0.9778 0.9782 0.9787
RecurrentBasicUnits 18877548 0.9762 0.9567 0.9783 0.9777 0.9687 0.9794

StackRecurrentBasicUnits 34599276 0.9763 0.9293 0.9788 0.9775 0.9511 0.9790

Table 5. Joint segmentation results at ACC, SEN and SPC for the recurrent block in the Fig 4.

Recurrent Block Parament
Joint Optic Disc and Cup

ACC SEN SPC F1(mean/std)

BasicUnits 11016684 0.9792 0.9548 0.9800 0.9318/0.009
RecurrentUnits 11017628 0.9793 0.9629 0.9798 0.9312/0.101

StackRecurrentUnits 18883436 0.9795 0.9632 0.9801 0.9423/0.007
RecurrentBasicUnits 18877548 0.9793 0.9592 0.9799 0.9296/0.107

StackRecurrentBasicUnits 34599276 0.9794 0.9598 0.9801 0.9346/0.106

Fig 7 shows a visualization example of the OD, OC and joint OD and OC 436

segmentation results of the five structures in the sample drishtiGS 100. DrishtiGS 100 is 437

a retinal image of a glaucoma case. It can be seen from Fig 7 that compared with 438

BasicUnits, StackRecurrentUnits significantly improves the accuracy of the OD and 439

OC segmentation results, which are basically the same as the segmentation area of 440

Ground Truth, and the edge part of the segmentation result is smoother. Among them, 441

the OC area segmented by BasicUnits is larger than Ground Truth, which will make 442

the CDR value too large, and it is easy to be misjudged as glaucoma. After using 443

StackRecurrentUnits, the segmented OC area is basically close to Ground Truth, 444

which can effectively reduce this misjudgment. This proves that on the RFC-Net model, 445

StackRecurrentUnits has better feature representation ability than other structures. 446

Fig 7. Comparison of segmented images with different recurrent units in
the Drishti-GS1 dataset. (a) Ground Truth. (b) Basic Units. (c) Recurrent Units.
(d) Stack Recurrent Units. (e) Recurrent Basic Units. (f) Stack Recurrent Basic Units.
The green contour represent the boundary of OD, the blue contour represent the
boundary of OC.
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To further illustrate the effectiveness of StackRecurrentUnits, we compared the 447

ROC curves of the five structures in OD, OC, and joint OD and OC segmentation, as 448

shown in Fig 8. StackRecurrentUnits has an increase in the area under the curve 449

(AUC) of the optic disc by 0.0147 compared with BasicUnits, StackRecurrentUnits 450

increased the AUC for the optic cup by 0.0235. The AUC of StackRecurrentUnits for 451

joint optic disc segmentation was 0.9910. In summary, it can be shown that 452

StackRecurrentUnits is effective in OD and OC segmentation. It can also be seen that 453

it is reasonable to combine convolutional networks and recurrent networks. At the same 454

time, it also shows that the OD and OC segmentation performance is also improved by 455

adding recurrent block to the network. 456

Fig 8. Comparison of receiver operating characteristic (ROC) curves of
each structure in the Drishti-GS1 dataset. (a) Cup. (b) Disc. (c) Optic.

4.5 Comparison of Segmentation Performance 457

In order to further demonstrate the effectiveness of RFC-Net for OD and OC 458

segmentation, on the Drishti-GS1 dataset, in this section, we compare the performance 459

of the proposed method with BCRF [22], Superpixel [18], and Graph cut prior [16], 460

Boosting CNN [19], U-Net [20], RACE-Net [23], Stack-U-Net [24], pOSAL [39] and 461

several other state-of-art OD and OC segmentation methods. 462

Table 6. Experiment results of OD and OC segmentation on Drishti-GS1 dataset.

Author Method Year
OD(mean/std) OC(mean/std)
F1 BLE(px) F1 BLE(px)

JoshiGD [36] Multiview 2012 0.9600/0.020 8.93/2.96 0.7900/0.18 25.28/18.00
ChengJ [18] Suprpixel 2013 0.9500/0.020 9.38/5.75 0.8000/0.140 22.04/12.57
ZhengY [16] Graph cut prior 2013 0.9400/0.060 14.74/15.66 0.7700/0.160 26.70/16.67
ZillyJG [19] Boosting CNN 2015 0.9470/0.030 9.10/3.10 0.8300/0.140 16.50/11.01

RonnebergerO [20] U-Net 2015 0.9600/0.020 7.23/4.51 0.8500/0.100 19.53/13.98
Sevastopolsky [21] Modication-U-Net 2017 0.9500/- -/- 0.8500/- -/-
ChakravartyA [22] BCRF 2017 0.9700/0.020 6.61/3.55 0.8300/0.150 18.61/13.02
ArunavaC [23] RACE-net 2018 0.9700/0.020 6.06/3.84 0.8700/0.090 16.13/7.63

SevastopolskyA [24] Stack-U-Net 2018 0.9700/- -/- 0.8900/- -/-
Al −BanderB [38] DenseNet FCN 2018 0.949/- -/- 0.8282/- -/-

WangS [39] pOSAL 2019 0.965/- -/- 0.858/- -/-
Proposed RFC-Net - 0.9787/0.009 3.96/1.79 0.9058/0.118 15.40/11.19

In our experiment, 51 fundus images in the testing set are segmented. As shown in 463

Table 6, we show the segmentation results of the RFC-Net in F1 and BLE. Compared 464

with other recent methods, RFC-Net achieves the best performance in both F1 and 465

BLE. BCRF [22] has jointly segmented the disc and the cup based on the Conditional 466

Random Field, and obtained the most advanced performance on OD segmentation. 467

However, its performance for OC segmentation is not good enough. In [16], this 468

algorithm regards OD and OC segmentation as a pixel labeling problem, the depth 469

information is not considered by the algorithm. Hence, the segmentation accuracy is not 470

accurate enough. In Boosting CNN [19], its ability for feature extraction is weak, and 471

deeper semantic information cannot be learned. Therefore, the performance for OD and 472

OC segmentation is relatively poor. In Superpixel [18] algorithm, because it is based on 473

various hand-made visual features, discriminating representations are not enough, so it 474

is easily affected by the lesion area. For U-Net [20], there is a lack of receptive field, and 475
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the global context information of the fundus image cannot be fully understood, so that 476

the segmentation effect on the OC is not ideal. In RACE-net [23] algorithm, insufficient 477

feature extraction for fundus images is carried out without strong intensity gradient, 478

and it results in poor segmentation performance. Stack-U-Net [24] improved the 479

structure proposed in [20], but the number of model parameters increased linearly with 480

the increase of the number of blocks, and the accuracy of the OD and OC segmentation 481

is not as good as the proposed method. In pOSAL [39] algorithm, pOSAL framework 482

focus is on enhancing the robustness of the deep network through domain shift, ignoring 483

the relationship between the OD and the OC, and the edge information of the OC 484

cannot be accurately extracted. The segmentation accuracy is not good enough. 485

Through extensive experimental evaluation and comparison with existing methods, it is 486

shown that the proposed RFC-Net framework is superior to most recent methods for 487

the OD and/or OC segmentation. Our approach captures edge detail information more 488

efficiently and learns better feature representations in the OD and OC segmentation. 489

Fig 9 shows the edge curve between the OD and OC segmented in the sample 490

drishtiGS 006, drishtiGS 007, drishtiGS 019, drishtiGS 05 and drishtiGS 100 by several 491

sate-of-art methods, including BCRF [22] and Multiview [36]. The edge curve of other 492

algorithms are omitted here for sake of space. It is shown in Fig 9 that the RFC-Net 493

model proposed divides the OD and OC boundary better than other methods. 494

Regardless of the fundus image of a normal person or a patient, the error between the 495

edge of the segmented area and the edge of the standard area is quite small, especially 496

for the segmentation of the OC, which helps to validate the proposed algorithm. 497

Fig 9. This results demonstrates qualitative results of the proposed
RFC-Net. First column is the original image, second column is the ground
truth, third column is the results of the RFC-Net(ours), four column is the
results of the BCRF [22], and five column is the results of the
Multiview [36]. The green contour represent the boundary of OD, the blue
contour represent the boundary of OC.

4.6 Quantitative Analysis of Segmentation Results of Different 498

Competitive Algorithms 499

The proposed RFC-Net model shows excellent performance in OD and OC 500

segmentation. In order to make our results more convincing, we have selected several 501

more competitive algorithms and tested them in the experimental environment 502

described in this paper. We used 51 test images on the Drishti-GS1 dataset, and tested 503

them on FCN [27], U-Net [20], M-Net [25] and CE-Net [4] respectively. 504

When experimenting on FCN [27], U-Net [20], M-Net [25] and CE-Net [4] in this 505

paper, our training parameter settings are as follows: (1) We reproduce FCN [27], 506

U-Net [20], M-Net [25] and CE-Net [4] only set random initial weights. (2) We set the 507

batch to 8, train on NVIDIA Tesla K80 (12G) GPU, use Python 3.6 as the 508

programming language, use Pytorch 1.0.0 deep learning framework for algorithm design 509

and coding, and use Nesterov momentum Stochastic gradient descent method for 510

end-to-end training. 511

As shown in Table 7, with DRISHTI GS1, the RFC-Net model can segment the OD 512

regions with around 0.9787, 3.96, 0.9764, 0.9578, and 0.9778 of F1, BLE, accuracy, 513

sensitivity and specificity, respectively, the RFC-Net model can segment the OC regions 514

with around 0.9058, 15.40, 0.9778, 0.9782, and 0.9787 of F1, BLE, accuracy, sensitivity 515

and specificity, respectively. The experimental results show that the five evaluation 516

indicators of RFC-Net are better than other network models. Compared with the latest 517

CE-Net, the F1 score of our method is increased by 3.59% in the OC segmentation, 518
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which is a great improvement and effectively proves that the RFC-Net model has better 519

performance. 520

Table 7. F1, BLE, Accuracy, Sensitivity and Specificity with the RFC-Net ,FCN, U-net, M-Net and
CE-Net models on Drishti-GS1 dataset.

Method
OD OC

F1 BLE ACC SEN SPC F1 BLE ACC SEN SPC

FCN [27] 0.9321 8.90 0.9149 0.9021 0.9475 0.8170 21.83 0.9217 0.9176 0.9515
U −Net [20] 0.9600 7.23 0.9579 0.9417 0.9579 0.8500 19.53 0.9493 0.9592 0.9678
M −Net [25] 0.9621 6.07 0.9619 0.9512 0.9678 0.8513 17.96 0.9682 0.9622 0.9711
CE −Net [4] 0.9688 5.04 0.9714 0.9567 0.9614 0.8699 16.06 0.9725 0.9671 0.9715
RFC −Net 0.9787 3.96 0.9764 0.9578 0.9783 0.9058 15.40 0.9778 0.9782 0.9787

In order to show the segmentation effect of OD and OC more clearly, we select a 521

normal eye image and a glaucoma image respectively, and compare the real 522

segmentation contours of FCN [27], U-Net [20], M-Net [25], CE-Net [4] and our method. 523

As shown in Fig 10, compared with the four competitive algorithms, our model has a 524

clearer segmentation boundary, and the segmentation curves of OD and OC are closest 525

to Ground Truth. It is worth noting that our model has obvious advantages for OC 526

segmentation. It can be seen that our proposed RFC-Net can greatly improve the 527

performance of lesion segmentation. 528

Fig 10. Ground Truth, our methods RFC-Net, FCN, U-Net, M-Net and
CE-Net real segmentation contours. (a) Ground Truth. (b)RFC-Net. (c)FCN.
(d)U-Net. (e)M-Net. (f)CE-Net.

5 Discussion 529

5.1 Is module fusion effective? 530

Our method jointly divides the OD and OC regions and considers their correlation in 531

polar coordinates. In RFC-Net, in order to prove the effectiveness of the proposed 532

recurrent module, polar module, multi-scale input module and multiple output module, 533

we performed the following ablation studies on the Drishti-GS1 dataset: 534

Ablation studies using improved FCN: Our proposed method is based on 535

FCN, so FCN is the most basic benchmark model. We improved the basic FCN model, 536

using 3× 3 convolution instead of downsampling to further learn feature map semantic 537

information and position information, and transposed 3× 3 convolution for performing 538

upsampling to obtain refined edges. Four proposed recurrent units are the contribution 539

to this paper, they have been analyzed and compared in Table 8. Here we select the 540

StackRecurrentUnits in the Figure 4(c) with the best effect and replace the 541

convolution in the basic FCN with the StackRecurrentUnits to enhance the learning 542

ability. We call the improved FCN network with StackRecurrentUnits as ‘Backbone’. 543

We also performed experiments to compare the segmentation results of Backbone with 544

the basic FCN. Table 8 shows the segmentation results of the two methods. As we can 545

see, compared with the segmentation results of the basic FCN. On the OD, the F1 score 546

of the backbone increased by 0.92%, and the BLE decreased by 2.29. On the OC, the 547

F1 score of the backbone increased by 1.3%, and BLE decreased by 3.22. The results 548

show that we are effective in improving the basic FCN. 549

Research on ablation of multi-scale input and multiple output modules: 550

Our multi-scale input joint FCN takes advantage of the correlation between OD and OC 551
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and achieves better performance than the basic FCN. In Table 8, our ‘Backbone’ with 552

multi-scale input and multiple output modules(‘Backbone’+Input+Output) achieves a 553

higher F1 score than the single-scale network ‘Backbone’. In contrast, on the OD, the 554

F1 score increased by 1.03%, and the BLE decreased by 0.38. On the OC, the F1 score 555

increased by 2%, and the BLE decreased by 1.98. It shows that multi-scale input and 556

multiple output modules are useful for guiding early layer training. 557

Ablation research of Polar transformation module: The proposed polar 558

transformation module is used to improve the segmentation performance of the OD and 559

OC. As a contribution of our work, the polar transformation increases the proportion of 560

the OC region. By using polar coordinate transformation, not only the space limitation 561

can be obtained, but also the ratio of the OC region can be increased, which further 562

improves the segmentation performance. We conducted a simulation experiment using 563

polar transformation, and compared the ‘Backbone’ method using polar transformation 564

with the ‘Backbone’ method without using polar transformation. It can be seen from 565

Table 8 that on the OD, the F1 score of the ‘Backbone + PT’ increased by 1.87%, and 566

BLE decreased by 1.42. The effect on the OC is more significant, the F1 score of the 567

‘Backbone + PT’ increased by 2%, and BLE decreased by 2.48. Please note that 568

‘Backbone’ and PT perform better than ‘Backbone’ without PT. At the same time, we 569

find that the gain of polar transformation is higher than the gain using multi-scale input 570

and multiple output modules. Polar transformation is particularly helpful for OC 571

segmentation. 572

Ablation research of networks of similar complexity: Researchers have 573

shown that complexity is a manifestation of network functions, and an increase in 574

complexity usually leads to better performance [43]. Therefore, there is a concern that 575

improvements may come from increased network complexity. To alleviate this concern, 576

we compared networks of similar complexity: M-Net [25] and CE-Net [4]. Table 8 shows 577

that our RFC-Net is better. Compared with M-Net [25], the F1 score of the OD 578

increased from 0.9621 to 0.9787, the BLE decreased from 6.07 to 3.96. The F1 score of 579

the OC increased from 0.8513 to 0.9058, and BLE decreased from 17.96 to 15.40. 580

Compared with CE-Net [4], the F1 score of the OD increased from 0.9688 to 0.9787, 581

BLE decreased from 5.04 to 3.96. The F1 score of the OC increased from 0.8699 to 582

0.9058, and BLE decreased from 16.06 to 15.40. 583

5.2 Can technology work in basic U-Net? 584

We apply the polar transformation module and the recurrent block to the basic 585

U-Net [20] respectively. Two results of U-Net are reported, one is the basic U-Net [20] 586

used to segment OD and OC, and the other is that U-Net uses our polar transformation 587

module and recurrent block (U-Net+PT+Stack Recurrent Units) to jointly segment OD 588

and OC. As shown in Table 8, compared with the two results, the U-Net with the polar 589

transformation module and the recurrent block achieved better performance. On the 590

OD, the F1 score increased by 1.47%, and the BLE decreased by 0.38. On the OC, the 591

F1 score increased by 2.65%, and the BLE decreased by 3.55. This shows that our 592

proposed technology can work in the basic U-Net. 593

5.3 Limitations and prospects 594

First of all, in this study, we tried to further expand the OC region through the polar 595

transformation method, and achieved certain results, effectively alleviating the difficulty 596

of determining the OC region in the current method. In the future, the determination 597

methods of OD and OC should be further improved and tested in a larger database. 598

Secondly, we only analyze the fundus image, which cannot explain the effectiveness 599

of our method in the field of image segmentation, and it is difficult to design 600
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representative functions for different applications. So naturally a question is raised: Can 601

the proposed methods and techniques be generalized to other tasks? We conducted 602

ablation experiments carefully and observed positive results. We leave a detailed 603

discussion for future work. 604

Table 8. Ablation study of each module on Drishti-GS1 dataset

Method
OD(mean/std) OC(mean/std)
F1 BLE(px) F1 BLE(px)

FCN [27] 0.9321/0.102 8.90/5.74 0.8170/0.103 21.83/15.67
Backbone 0.9413/0.020 6.61/3.55 0.8300/0.150 18.61/13.02

Backbone+ Input+Output 0.9516/0.119 6.23/3.51 0.8500/0.100 18.11/13.70
Backbone+ PT 0.9600/0.020 5.19/3.95 0.8700/0.090 16.13/12.63
M −Net [25] 0.9621/0.170 6.07/4.71 0.8513/0.192 17.96/14.05
CE −Net [4] 0.9688/0.003 5.04/3.69 0.8699/0.117 16.06/13.11
U −Net [20] 0.9600/0.020 7.23/4.51 0.8500/0.100 19.53/13.98

U −Net+ PT + StackRecurrentUnits 0.9781/0.009 4.59/2.56 0.8908/0.094 15.98/11.26
RFC −Net(All Modules) 0.9787/0.009 3.96/1.79 0.9058/0.118 15.40/11.19

6 Conclusions 605

In this paper, by using the combination of fully convolution network and recurrent 606

convolution network, RFC-Net algorithm is proposed for the OD and OC segmentation. 607

In RFC-Net, a recurrent fully convolution network is applied as the infrastructure. The 608

recurrent unit helps to train the deep architecture, which allows us to design a better 609

FCN network with the same number of network parameters. And downsampling the 610

image naturally constructs a multi-scale input in the encoder path, the multiple output 611

layer is treated as a classifier, generating a segmentation map corresponding to the 612

multi-scale input image. In order to ensure the validity of the output, a multiple output 613

cross entropy loss function is proposed, which can deal with the data imbalance problem 614

in the segmentation image. And the polar transformation effectively improves the 615

segmentation result. The experiment results show that the proposed RFC-Net 616

outperforms some state-of-art algorithm for OD and OC segmentation, such as BCRF, 617

RACE-net, Stack-U-Net, DenseNet FCN and pOSAL. 618
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