
A Bayesian Linear Mixed Models

In this section, we explain in more detail the Bayesian take on the linear model

ȳg,c =

T∑
t=1

mt,gωt,c + noise, (1)

where we model the normalized gene expression signal ȳg,c = yg,c − ȳg − ȳc as a linear com-
bination of the motif scores MT,G, which are each, dependent on the sample c and the TF
t, weighted with ωT,C . The term ‘noise‘ represents all signal that cannot be explained by
the model, i.e. the linear combination of the motif scores MT,G. This can be any technical
noise, motif influence for which the linear assumption might be too simplistic, but also any
other source that drives the gene expression yg,c and is not modeled. The model was origi-
nally introduced by The Fantom Consortium and the Riken Omics Science Center (2009) and
subsequently expanded by Balwierz et al. (2014).

The main idea behind a Bayesian approach is to include some prior knowledge into the
data, called the prior. Here, we model ωt,c, the influence of motif t ∈ {1, . . . , T} in condition
c ∈ {1, . . . , C}, as a normal distributed prior with mean zero. Its marginal distributions are

ωC ∼ N (0,VC) , (2)

where VC is the covariance in motif activity over all conditions and

ωT ∼ N
(
0, σ2IT

)
, (3)

with σ2IT being the covariance over all motifs. Hence, we assume independence between
motifs. Assuming dependence between motifs with covariance Ψ can easily be implemented in
the model. Making use of the vectorization representation of multivariate normal distribution,
we can write the multivariate Normal distribution of ωT,C as follows:

vec (ωT,C) ∼ N
(
0, σ2VC ⊗ IT

)
. (4)



Analogously, we can rewrite Eq. 1 in matrix-vector notation:

vec (YG,C) ∼ N
(
Mᵀ

T,GωT,C , δΣC ⊗ IG

)
, (5)

with ΣC being the covariance conditions and δIG covariance over genes. In the following,
we use Bayes’ rule on marginal and conditional Gaussians (see ?, Chapter 2.3, p. 93). We
first list the general formulas here, which we copy from ?: The marginal distribution of x and
conditional distribution of y given x are given as follows:

p(x) = N
(
x|µ,Λ−1

)
(6)

p(y|x) = N
(
y|Ax + b,L−1

)
. (7)

Translating that notation into our own notation, we get the following equivalences:

x ≡ vec (ωT,C) µ ≡ 0 Λ−1 ≡ σ2VC ⊗ IT (8)

y ≡ vec (YG,C) A ≡Mᵀ
T,G b ≡ 0 L−1 ≡ δΣC ⊗ IG. (9)

In our own notation, and following Eq. 7, the distribution of YG,C given ωT,C can be rewritten
as:

vec (YG,C |ωT,C) ∼ N
(
0, σ2VC ⊗ΠG + δΣC ⊗ IG

)
, (10)

where ΠG = Mᵀ
T,GMT,G.

Going back to the general formula from ?, the marginal distribution of y and conditional
distribution of x given y are computed according to the following:

p(y) = N
(
y|Aµ+ b,L−1 + AΛ−1AT

)
(11)

p(x|y) = N
(
x|Σ

{
ATL (y − b) + Λµ

}
,Σ
)
, (12)

with Σ =
(
Λ + ATΛA

)−1
. (13)

Hence, based on Eq. 11 and Eq. 12, the posterior distribution of ωT,C given YG,C is then

vec (ωT,C |YG,C) ∼ N
((

VC ⊗Mᵀ
T,GIT

)
ΛCG⊗CG

−1vec (YG,C),ΛCG⊗CG

)
(14)

with
ΛCG⊗CG = σ2VC ⊗ΠG + δΣC ⊗ IG. (15)

For the reformulation, we used the Woodbury matrix identity (Woodbury, 1950). For the
computation of the posterior values of ωT,C , with notation ω̂T,C , it suffices to compute the
mean of Eq. 14:

vec (ω̂T,C |YG,C) =
(
VC ⊗Mᵀ

T,GIT

) [
σ2VC ⊗ΠG + δΣC ⊗ IG

]−1
vec (YG,C) (16)

As the covariance matrix is assumed to be the sum of Kronecker products, the runtime
complexity is reduced to O

(
G3 + C3

)
in a O

(
G2 + C2

)
space instead of O

(
G3C3

)
runtime

and a memory requirement of O
(
G2C2

)
(Lippert et al., 2014).
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