Supporting information

S1 Appendix. Closed-form solutions for Bayesian Linear Regression.

Consider a standard linear model $y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{p} x_{i, p}+\epsilon_{i}$ for $i=1, \ldots, n$ expressed in matrix form:

$$
\begin{equation*}
\boldsymbol{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon} \tag{9}
\end{equation*}
$$

where

- $\boldsymbol{y}=\left[y_{i}\right]_{i=1}^{n}$ is the outcome variable vector of length n.
- $X=\left[\boldsymbol{x}_{i}^{T}\right]_{i=1}^{n}$ is the model matrix of dimension $n \times(p+1)$ where we have a column of 1's for the intercept and p covariates.
- $\boldsymbol{\beta}=\left[\beta_{j}\right]_{j=0}^{p}$ is the population parameter vector of regression coefficients of length $(p+1)$.
- $\boldsymbol{\epsilon}=\left[\epsilon_{i}\right]_{i=1}^{n} \sim \operatorname{MVN}\left(\mathbf{0}, \sigma^{2} I_{n}\right)$ is the vector of random error terms, where σ^{2} is an unknown variance parameter.
thus we have a total of $(p+1)+1=p+2$ parameters of interest.
Normal/Inverse Gamma (NIG) conjugacy: The analytic/closed-form solution to the posterior distribution of all $p+2$ parameters of interest from the model above exploits Normal/Inverse Gamma (NIG) conjugacy of the following 4 parameters:
- $\boldsymbol{\mu}$ a mean hyperparameter vector for $\boldsymbol{\beta}$ of length $(p+1)$.
- V a covariance hyperparameter matrix for $\boldsymbol{\beta}$ of dimension $(p+1) \times(p+1)$.
- a a shape hyperparemeter for σ^{2} which is a scalar >0.
- b a scale hyperparemeter for σ^{2} which is a scalar >0.

Prior distribution: After specifying prior hyperparameter values for $\boldsymbol{\mu}_{0}, V_{0}, a_{0}>0$, and $b_{0}>0$ we have:

$$
\begin{align*}
p\left(\boldsymbol{\beta}, \sigma^{2}\right) & =\operatorname{NIG}\left(\boldsymbol{\mu}_{0}, V_{0}, a_{0}, b_{0}\right) \tag{10}\\
& =N\left(\boldsymbol{\mu}_{0}, \sigma^{2} V_{0}\right) \times I G\left(a_{0}, b_{0}\right) \tag{11}\\
& =p\left(\boldsymbol{\beta} \mid \sigma^{2}\right) \times p\left(\sigma^{2}\right) \tag{12}
\end{align*}
$$

where

$$
\begin{align*}
p\left(\sigma^{2}\right) & =\frac{b_{0}^{a_{0}}}{\Gamma\left(a_{0}\right)}\left(\frac{1}{\sigma^{2}}\right)^{a_{0}+1} \exp \left(-\frac{b_{0}}{\sigma^{2}}\right) \tag{13}\\
& =\text { Inverse-Gamma }\left(a_{0}, b_{0}\right) \tag{14}
\end{align*}
$$

and

$$
\begin{align*}
p(\boldsymbol{\beta}) & =\int_{0}^{\infty} p\left(\boldsymbol{\beta} \mid \sigma^{2}\right) \times p\left(\sigma^{2}\right) d \sigma^{2} \tag{15}\\
& =\frac{\Gamma\left(\frac{\nu_{0}+p}{2}\right)}{\Gamma\left(\frac{\nu_{0}}{2}\right) \pi^{p / 2}\left|\nu_{0} \Sigma\right|^{1 / 2}}\left[1+\frac{\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{0}\right)^{T} \Sigma^{-1}\left(\boldsymbol{\beta}-\boldsymbol{\mu}_{0}\right)}{\nu_{0}}\right]^{-\frac{\nu_{0}+p}{2}} \tag{16}\\
& =\text { Multivariate } t_{d f=\nu_{0}}\left(\boldsymbol{\mu}_{0}, \Sigma_{0}\right) \text { for } \nu_{0}=2 a_{0} \text { and } \Sigma_{0}=\frac{b_{0}}{a_{0}} V_{0} \tag{17}
\end{align*}
$$

Posterior distribution: Thus given the likelihood $p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right)=\operatorname{MVN}\left(X \boldsymbol{\beta}, \sigma^{2} I\right)$, we have

$$
\begin{align*}
p\left(\boldsymbol{\beta}, \sigma^{2} \mid \boldsymbol{y}\right) & =\frac{p\left(\boldsymbol{y} \mid \boldsymbol{\beta}, \sigma^{2}\right) p\left(\boldsymbol{\beta}, \sigma^{2}\right)}{p(\boldsymbol{y})} \tag{18}\\
& =\operatorname{NIG}\left(\boldsymbol{\mu}^{*}, V^{*}, a^{*}, b^{*}\right) \tag{19}\\
p\left(\sigma^{2} \mid \boldsymbol{y}\right) & =\operatorname{Inverse-Gamma}\left(a^{*}, b^{*}\right) \tag{20}\\
p(\boldsymbol{\beta} \mid \boldsymbol{y}) & =\text { Multivariate } t_{d f=\nu^{*}}\left(\boldsymbol{\mu}^{*}, \Sigma^{*}\right) \text { for } \nu^{*}=2 a^{*} \text { and } \Sigma^{*}=\frac{b^{*}}{a^{*}} V^{*} \tag{21}
\end{align*}
$$

with posterior hyperparameter values

$$
\begin{align*}
\boldsymbol{\mu}^{*} & =\left(V_{0}^{-1}+X^{T} X\right)^{-1}\left(V_{0}^{-1} \boldsymbol{\mu}_{0}+X^{T} \boldsymbol{y}\right) \tag{22}\\
V^{*} & =\left(V_{0}^{-1}+X^{T} X\right)^{-1} \tag{23}\\
a^{*} & =a_{0}+\frac{n}{2} \tag{24}\\
b^{*} & =b_{0}+\frac{1}{2}\left[\boldsymbol{\mu}_{0}^{T} V_{0}^{-1} \boldsymbol{\mu}_{0}+\boldsymbol{y}^{T} \boldsymbol{y}-\boldsymbol{\mu}^{* T} V^{*-1} \boldsymbol{\mu}^{*}\right] \tag{25}
\end{align*}
$$

Posterior predictive distribution: In a Bayesian framework, given a set of observed outcome variables \boldsymbol{y} the posterior predictive distribution of a new observations $\tilde{\boldsymbol{y}}$ is 22:

$$
\begin{equation*}
p(\tilde{\boldsymbol{y}} \mid \boldsymbol{y})=\int_{\boldsymbol{\Theta}} p(\tilde{\boldsymbol{y}}, \boldsymbol{\Theta} \mid \boldsymbol{y}) d \boldsymbol{\Theta}=\int_{\boldsymbol{\Theta}} p(\tilde{\boldsymbol{y}} \mid \boldsymbol{\Theta}, \boldsymbol{y}) \times p(\boldsymbol{\Theta} \mid \boldsymbol{y}) d \boldsymbol{\Theta} \tag{26}
\end{equation*}
$$

While a frequentist approach would use $p(\tilde{\boldsymbol{y}} \mid \widehat{\boldsymbol{\Theta}}, \boldsymbol{y})$ based on the maximum likelihood estimate vector $\widehat{\boldsymbol{\Theta}}$, the above Bayesian posterior formulation accounts for the uncertainty about $\boldsymbol{\Theta}$ by integrating $p(\tilde{\boldsymbol{y}} \mid \boldsymbol{\Theta}, \boldsymbol{y})$ over the posterior distribution $p(\boldsymbol{\Theta} \mid \boldsymbol{y})$. Hence, the posterior predictive distribution will have higher variance.

In the case of our Bayesian linear regression model, we have $\boldsymbol{\Theta}=\left\{\boldsymbol{\beta}, \sigma^{2}\right\}$. For a new model matrix \tilde{X} of dimension $m \times(p+1)$ based on m new observations we'd like to make a prediction $\tilde{\boldsymbol{y}}$ for:

$$
\begin{align*}
p(\tilde{\boldsymbol{y}} \mid \boldsymbol{y}) & =\int p\left(\tilde{\boldsymbol{y}}, \boldsymbol{\beta}, \sigma^{2} \mid \boldsymbol{y}\right) d \boldsymbol{\beta} d \sigma^{2} \tag{27}\\
& =\int p\left(\tilde{\boldsymbol{y}} \mid \boldsymbol{\beta}, \sigma^{2}, \boldsymbol{y}\right) \times p\left(\boldsymbol{\beta}, \sigma^{2} \mid \boldsymbol{y}\right) d \boldsymbol{\beta} d \sigma^{2} \tag{28}\\
& =\int M V N\left(\tilde{X} \boldsymbol{\beta}, \sigma^{2} I\right) \times \operatorname{NIG}\left(\boldsymbol{\mu}^{*}, V^{*}, a^{*}, b^{*}\right) d \boldsymbol{\beta} d \sigma^{2} \tag{29}\\
& =\text { Multivariate } t_{d f=\nu^{*}}\left(\tilde{X} \boldsymbol{\mu}^{*}, \frac{b^{*}}{a^{*}}\left(I+\tilde{X} V^{*} \tilde{X}^{T}\right)\right) \tag{30}
\end{align*}
$$

