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S1 Appendix. Closed-form solutions for Bayesian Linear Regression.
Consider a standard linear model y; = Bo + f1zi1 + ...+ BpTip+ € fori=1,...,n
expressed in matrix form:

y=XB+e (9)
where
e y = [y;]"_, is the outcome variable vector of length n.

e X = [z7]" | is the model matrix of dimension n x (p + 1) where we have a
column of 1’s for the intercept and p covariates.

e 3= [ﬂj]?:o is the population parameter vector of regression coefficients of length
(p+1).

e € =[e;]", ~ MVN(0,02%I,) is the vector of random error terms, where o
unknown variance parameter.

2 is an

thus we have a total of (p+ 1) + 1 = p 4+ 2 parameters of interest.
Normal/Inverse Gamma (NIG) conjugacy: The analytic/closed-form solution to
the posterior distribution of all p 4+ 2 parameters of interest from the model above
exploits Normal/Inverse Gamma (NIG) conjugacy of the following 4 parameters:

e 1 a mean hyperparameter vector for 3 of length (p + 1).

e V a covariance hyperparameter matrix for 8 of dimension (p + 1) x (p + 1).
e a a shape hyperparemeter for o2 which is a scalar > 0.

e b a scale hyperparemeter for o2 which is a scalar > 0.

Prior distribution: After specifying prior hyperparameter values for pg, Vg, ag > 0,
and by > 0 we have:

p(/GvUQ) = NIG(N’0>VO7a07bO) (10)
= N(po, V) x 1G(ag, bo) (11)
= p(Blo*) xp(0?) (12)
where
pio /1 \"" b
2y _ 0 L _20
wh) = g () (-8 1
= Inverse-Gamma(ag, by) (14)
and
w8 = [ #(Blo*) xplo*)io” (15)
0
_votp
_ I (**) . (Buo)Tzl(ﬁuo)] 2 (16)
T (%) 7/ 3] /2 Yo
b
= Multivariate tgr—,, (tt0, $o) for vy = 2a and Xy = aﬁvo (17)
0
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Posterior distribution: Thus given the likelihood p(y|3, 0?) = MVN(X 3, 0%I), we
have

p(y|B,0%)p(B,0?)

p(B,0%ly) = 18
(B,0°y) o) (18)
= NIG(p*,V*, a*,b") (19)
p(c?ly) = Inverse-Gamma(a*,b*) (20)

b*
p(Bly) = Multivariate tgp—,~ (", ¥*) for v* = 20" and ¥* = —V* (21)

a

with posterior hyperparameter values
poo= (Vo A XTX) TNV e+ X Ty) (22)
Veo= (V4 XTX)T! (23)
(l* = ag+ g (24)
1 _ * *— *

b= bot g (o Vo o+ yly — TV ] (25)

Posterior predictive distribution: In a Bayesian framework, given a set of observed
outcome variables y the posterior predictive distribution of a new observations g is [22]:

p(ﬂly)Z/G)p(ﬂv@\y)d@Z/ep@I@,y)Xp(@Iy)d@ (26)

While a frequentist approach would use p(g|(:), y) based on the maximum likelihood
estimate vector @, the above Bayesian posterior formulation accounts for the
uncertainty about © by integrating p (g |®,y) over the posterior distribution p (© |y).
Hence, the posterior predictive distribution will have higher variance.

In the case of our Bayesian linear regression model, we have © = { 3, 02}. For a new
model matrix X of dimension m x (p + 1) based on m new observations we’d like to
make a prediction gy for:

wily) = [ 950" w)dpds? (27)
— [ p(@1B.0%v) x p(B.o* ly)dBic? (28)
= / MVN(XB,0%I) x NIG(p*, V*,a*,b*)dBdo> (29)
= Multivariate tg—,~ <X’u*,Z:(I+X'V*XT)> (30)
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