
S1 Appendix

A Generating Price Indices

We follow approach suggested by [1], originating with [2], to eliminate quality-related
variations in alcohol prices by constructing a Laspeyres price index pct for households h
living in postcode c at quarter t from the unit prices of products, where the latter is
defined as a brand in an alcohol category:

pct =

∑
k pkctqk0∑
k pk0qk0

(1)

where k denotes products, pkct is the unit price of k in postcode c at quarter t and
and pk0 and qk0 are the sample median prices and quantities for k. This approach aims
to ensure that the derived price index will not vary with systematic differences in
unobserved household characteristics, which may either affect preferences for quality or
influence local prices. In the demand function estimate, we also control for the prices of
the closest substitutes, including: regular soft drinks; diet drinks; fruit juice; and,
bottled water. We construct price indices for these other beverage categories as per the
procedure we use for alcohol, and assume that these price indices remain constant in the
counterfactual scenario.

B Quantile Regression

We use quantile regression to identify heterogeneity in ex-ante wealth effects across the
distribution of alcohol purchasing. To begin, consider a standard linear regression model
that defines the conditional mean of the dependent variable y, as a linear function of a
vector of explanatory variables, x, written as

yi = x
′

iβθ + εi and E(yi|xi) = x
′

iβ (2)

where ε is an error term. While this standard linear regression is useful for estimating
the average (mean) effect of x on y, it provides only a partial view of the relationship.
Quantile regression provides a more complete picture by estimating the relationship
between y and x at different points (i.e. quantiles) over the conditional distribution of y.
That is, it allows for effects of the independent variables to differ over the quantiles (of
alcohol purchases in our case), which is of particular interest to us given the uneven
distribution of alcohol purchases in the sample population. The starting point for
quantile regression is the conditional quantile function (CQF). The CQF at quantile θ
for a continuously distributed variable y, given a vector of regressors x, can be defined as

Qθ(yi|xi) = x
′

iβθ (3)

where Qθ(yi|xi) denotes the θth conditional quantile of yi. So, for example, to describe
the median (mid-point in the distribution), we take θ = 0.5. In the context of our study,
where large volumes of alcohol are purchased by a relatively small share of households,
the median is probably more informative than the mean. The quantile regression model
of the form first introduced by [3] can written as:

yi = x
′

iβθ + εθi (4)
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where βθ is the vector of parameters, and the conditional quantile of the error term is
zero. The quantile regression estimator of βθ is found by solving the problem:

min
βθ

1

N

 ∑
yi≥x

′
iβθ

θ|yi − x
′

iβθ|+
∑

yi≥x
′
iβθ

(1− θ)|yi − x
′

iβθ|

 = min
βθ

1

N

∑
i=1

ρθ(εθi) (5)

where ρθ(λ) = (θ − I(λ < 0))λ is the check function, and I(·) is the usual indicator
function. The special case where θ = 0.5 is called the median regression estimator, or
the least absolute deviations (LAD) estimator. The minimisation problem in Eq. (5)
can be solved by linear programming for different quantiles of the dependent variable
(see [3]), which makes estimation relatively fast [4]. Additionally, the quantile regression
estimator has several important equivariance properties that are preserved under
monotone transformations, which help facilitate the computation procedure. For
example, if we transform a set of positive observations by taking the values in logs, the
median of the log will be the median of the untransformed data. In our sample there is
left-side zero censoring because a large share of households did not purchase alcohol in
some quarters. Therefore, quantile regression of the form described in Eq. (3) is not
applicable and this specification needs to be corrected for zero censoring. One
alternative is the tobit model, also referred to as the censored regression model, which
can be written as:

y∗i = x
′

iβ + εi (6)

where

yi = y∗i if y∗i > 0

yi = 0 if y∗i ≤ 0

In other words, the tobit model is a standard regression model where all values of the
dependent variable that are equal to, or less then, zero take the value zero. The tobit
model describes both the probability that yi|xi = 0; and the distribution of yi|yi > 0.
However, despite its popularity, [5] shows that if the errors are not normally distributed
and homoscedastic, then the estimated coefficients of the tobit model are
inconsistent.1 [6] proposes an alternative to maximum likelihood estimation of the
parameters of the tobit censored regression model that is not based upon strict
parametric assumptions. His proposed censored least absolute deviations (LAD)

estimator β̂n is a generalization of LAD estimation for the standard linear model, and,
unlike estimation methods based on the assumption of normally distributed error terms,
the estimator is consistent and asymptotically normal for a wide class of error
distributions, and is also robust to heteroscedasticity. The value of the estimator β̂n can
be found by solving:

min
βθ

1

N

{
N∑
i=1

|y −max(0, x
′

iβ0)|

}
(7)

[6] later extended this median (LAD) regression, recognising that in situations where
the dependent variable is heavily censored (i.e. where y = 0 for a large share of the

observations), the censored LAD estimator β̂n may be very imprecise, since the median
of yi would be uninformative about β0 for much of the sample. In such a situation,
Powell suggests it may be preferable to centre the distribution of yi at a higher quantile

1When estimated coefficients are inconsistent it means that as the sample size increases indefinitely,
the estimators do not converge to their true (population) values and, therefore, the reported standard
errors and confidence intervals will be misleading.
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than the median, because a higher quantile would be more often positive, and thus more
often informative about β0. [6] further shows that under certain regularity conditions,
the estimators generated from a censored quantile regression (CQR) model are
consistent, independent of the distribution of the error term, are asymptotically
normally distributed, and are robust to outliers of the dependent variable. Below we
describe the CQR model in detail.

B.1 Censored Quantile Regression

When the conditional quantile of the error term is zero, a CQR model of alcohol
purchases censored at zero can be expressed as:

Qθ(yi|xi) = max{0, Qθ(x
′

iβθ + εi|xi)} = max{0, x
′

iβθ} (8)

The CQR estimator of βθ proposed by [6] is found by solving

min
βθ

1

N

{
N∑
i=1

[{θ − I(yi < max{0, x
′

iβθ})}(yi −max{0, x
′

iβθ

}
)] (9)

where I is an indicator function taking the value of unity when the expression holds,
and zero otherwise. For observations when x

′

iβθ is equal to or less than zero (i.e. zero

being the censoring point), max{0, x′

iβθ} = 0 and Eq. (7) is minimised by using only

the observations for which x
′

iβθ is greater than zero.
While Eq. (4) is a linear function and can be solved by linear programming as noted

above, the expression max{0, x′

iβθ} in Eq. (8) is not linear and has no linear
programming representation. Therefore, to solve Eq. (8), we use the three-step
algorithm proposed by [7] for known censoring points that is simple, easily computable
(comparable to linear least squares), well-behaved, robust, and performs well near the

censoring point. [7]’s estimator β̂θ is obtained in the following three steps. First, the
censoring probabilities are estimated by a parametric classification (probability) model
δi = pX

′

iγ + εi , where δi is the indicator of no censoring. Then, for each quantile
regression, a sample of observations with sufficiently low censoring probabilities relative
to the quantile of interest are selected (i.e. the households that did purchase alcohol),
defined as J0 = {i : pX ′

i γ̂ > 1− θ + c where θ is the quantile and c is the trimming
constant between 0 and 1, set to 0.1 in our case. Following [7], we allow for
misspecification of the model by excluding the observations that could theoretically be
used but have censoring probabilities in the highest quantiles.

Second, we obtain the initial (consistent but inefficient) estimator β̂0
θ using standard

linear quantile regression, shown in Eq. (4), for the sample J0. This initial estimator is

used to define a new subsample of observations J1 = {x∗i β̂0
θ}. This sample consists of all

observations for which the estimated conditional quantile is above the censoring point.
We exclude observations in the lowest quantiles of the distribution of the residuals.

Third, we use standard linear quantile regression, as per Eq. (4), for sample J1
defined in step two. As shown by [7], this results in a consistent and

efficient estimator of β̂θ. The standard errors of the parameter estimates are
obtained with the censored quantile regression bootstrapping procedure described by [8].
For all estimates we use the “cqiv” command available for Stata Version 14 written
by [9].

B.2 Counterfactual Analysis

To simulate a counterfactual distribution we use the modelling and inference tools
developed by [10]. A complete description of the statistical properties of the
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counterfactual estimation methods we implement can be found in [10]. The key element
of this approach is the counterfactual unconditional distribution FY 〈j|k〉, where Y is the
outcome of interest (alcohol purchases), and j and k are the reference (i.e. observed)
and counterfactual populations, respectively. FY 〈j|k〉 is the distribution of alcohol
purchases in population k if it had the same behavioural response (i.e. alcohol
purchases) to a change in exogenous characteristics (i.e. per capita household income)
as population j. The behavioural response is modelled through the conditional
distribution FYj |Xj , where the index j indicates that this distribution is estimated on
the reference population j, and X is a set of covariates. Let FXk be the unconditional
distribution of the covariates in counterfactual population k, then we have

FY 〈j|k〉(y) =

∫
FYj |Xj (y|x)dFXk(x) (10)

The counterfactual distribution FY 〈j|k〉(y) is estimated in two steps. First, the
conditional distribution FYj |Xj is estimated using the censored quantile regression model

described earlier, with Q̂Yj |Xj = Xβj(θ) at various quantiles θ ∈ [0, 1] using a sample of
population j. Next, the conditional distribution is obtained by the relationship

F̂Yj |Xj (y|x) =

∫ 1

0

1
{
Q̂Yj |Xj (θ|X = x) ≤ y

}
dθ (11)

where 1{·} is the indicator function and Q̂Yj |Xj (θ|X = x) = xβ̂j(θ).
In the second step, the counterfactual unconditional distribution is obtained by using

a simple plug-in rule:

FY 〈j|k〉(y) =
1

nk

∑
i∈k

F̂Yj |Xj (y|xi) (12)

where n is the size of population k and i is an observation in k. This empirical average
is the empirical counterpart of the theoretical formula in Eq. (9). Confidence intervals
(CIs) can be computed by bootstrap resampling over populations j and k [10]. We
further cluster the standard errors at the household level.

Using counterfactual distribution methods we estimate several outcomes of interest.
If we partition the vector of covariates X in (inc, Z), then our main counterfactual of
interest is the ‘after price policy’ distribution. The model is estimated for the observed
covariates X0 = (inc0, Z0) where inc0 is the pre-policy per capita income of households
and Z is a vector of household characteristics, price indices for alcoholic and
non-alcoholic beverages, and quarter dummies that we describe earlier. The
counterfactual is obtained for X1 = (inc1, Z0) where inc1 is the after-policy per capita
household income. The before/after unconditional quantile treatment effect (UQTE)
can be computed at each quantile θ as

δ̂p(θ) = Q̂Y 〈X0,(inc1,z0)〉(θ)− Q̂Y 〈X0,(inco,z0)(θ) (13)

where Q̂Y 〈j|k〉(θ) = min{y : FY 〈j,k〉}(y) ≥ θ. In practice, the after-policy population
is obtained by sampling observations in the current (pre-policy) population, calculating
the after-policy tax burden, and setting the observed income inc0 to the value that it
would take when the tax burden from the MUP policy is imposed, as described below.
Following this, we can also estimate other policy outcomes of interest, including the
predicted change in volume of alcohol (standard drinks) purchased per capita, per
quarter (or per day).

For all estimates we use the “counterfactual” command available for Stata Version
14 written by [9]. We have slightly modified this command in order to draw bootstrap
samples of households as we work with a panel, and also for clustering the standard
errors at the household level.
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B.3 Calculating tax burden and adjusted incomes

For Eq. 14, we calculate the value of adjusted per capita household income inck at the
after policy stage by adapting aspects of the mathematical framework in the Sheffield
Alcohol Policy Model (SAPM) version 2.0 (see [11]), including the SAPM method of
calculating the expected changes to product prices under a MUP policy and the
subsequent change in alcohol purchase costs (i.e. tax burden) for each household. The
first step is calculating the current product price (A$) per standard drink (12.67 mL
alcohol) as well as the new price under a MUP policy. Using the detailed information in
our dataset, we are able to accurately calculate pre-policy values of product prices and
household spending using individual details of each product u purchased at each
household’s separate shopping transactions l, including the alcoholic beverage category
k (X 9 categories), container size in litres s, quantity q of containers purchased in the
transaction, the alcohol by volume (ABV%) content of each product au, and the price
paid at the time of purchase pl. With this information, we calculate the current price
paid (A$) per standard drink d for each individual product transaction, denoted
price0uld and expressed as:

price0uld =
( pul
au(ql(sul)

)

d
(14)

To calculate price1uld, which is the after-policy price per standard drink that each
product will take under the simulated A$2.00 MUP policy, we inflate the value of
price0uld up to A$2.00 if it is less than A$2.00, otherwise the price is left unchanged.
We derive price indices for price1uld (ex post MUP scenario) for inclusion in our
counterfactual analysis model, as described above. The second step is to calculate the
additional alcohol purchase costs per capita (i.e. tax burden) for each household at the
new reduced quantity, post $2 MUP. We denote exp0pli and exp1pli to be the pre-policy
and after-policy purchase costs, respectively, which represent the summed pre-policy
price0uld (as defined in Eq.15), and summed after-policy price1uld at all shopping
transactions l, for ex post consumption by each individual i aged greater than eleven
years within each household j, of alcoholic beverage category k. To calculate the
additional annual per capita tax burden T under a MUP policy for each household j we
subtract for a specific quantity the pre-policy purchase costs from after-policy purchase
costs, expressed as:

Tj = (

K∑
k=1

exp1plik
j

)− (

K∑
k=1

exp0plik
j

) (15)

The third and final step is to calculate adjusted incomes inck for households at the
‘after price policy’ stage. For this, we simply subtract the annual per capita tax burden
for each household (Tj) from each household’s pre-policy per capita income inc∗.
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