
Properties of the model.

Predictor variables, error variance, and sample size. We uniformly randomly
generate the value of the jth factor at the ith level xij on the set {1, 2, · · · , 100}
for all i and j. We fix the sample size n = 100 and calibrate the ratio of the error
variance σ2 to expected value of the model at the mean value of the predictors
E(y|µx), where µx = E(x). We use a standardized linear regression model so that
if the ith observed response is y∗i , then we set yi = (y∗i − ȳ∗)/s∗, where ȳ∗ is
the sample mean and s∗ is the sample standard deviation of y∗i , i = 1, 2, · · · , n.
Implementing standardized linear regression model allows us to precisely specify
σ2 : E(y|µx). We fix three levels for σ2 : E(y|µx). (1 : 4), (1 : 1), and (4 : 1). We
set the true regression coefficients to be Dirichlet distributed with unit parameters
or equivalently, uniformly distributed on the interval (0, 1) with the constraint that
they sum to 1. Thus, all regression coefficients have the same mean effect size.
We set the correlation between the first factor x1 and other factors to a small value
of 0.2 to avoid orthogonality between predictors which is an idealized case that
we believe rarely achievable in practice. We performed additional analyses with
higher correlation between predictor variables and found that correlation between
predictors does not affect the results in our system unless it is extremely high and
causes multicollinearity.

Model selection criteria. SC is defined by p log(n) − logP(D|θ̂,M), where
p is the number of model parameters, n is the sample size, and θ̂ is the maximum
likelihood estimate of model parameters under M . Akaike’s Information Criterion
(AIC) is defined by 2p − logP(D|θ̂,M). For both SC and AIC, a smaller value
indicates a better model performance than a larger value. The maximized likeli-
hood logP(D|θ̂,M) rewards model fit equally in SC and AIC. The first term in
these formulas penalize the model complexity, with SC penalizing complex mod-
els more heavily for n ≥ 8 (with log(n)) than AIC as the sample size increases.
SC has the desirable property that when the true model generating the data is in
the universe of candidate models, it selects the true model with probability 1 as
n→∞, in other words it is consistent. For model M fitted to D, we calculate the
model selection criteria SC and AIC in a computationally efficient way.

Description of scientists and scientist populations. We let

R = {RRey, RTess, RMave, RBo}

and define the transition probabilities for these strategies as follows. For RRey,

P(M
(t)
P = Mj |M (t−1)

P = Mi,M
(t)
G = M

(t−1)
G ) =

{
1 if i = j,

0 otherwise.
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For RTess,

P(M
(t)
P = Mi|M (t)

G ) =


1/(m+ 1) if Mi is one of m models

one term away from M
(t)
G ,

mo otherwise.

If RRey ∈ R then mo = 0 and mo = 1/[(L − m)(m + 1)] otherwise. For
RMave, P(M

(t)
P = Mi|M (t)

G ) = 1/L, i = 1, 2, · · · , L. For RBo,

P(M
(t)
P = Mi|M (t)

G ) =


1/(m+ 1) if Mi is one of m models one

interaction larger than M (t)
G ,

mo otherwise.

If RRey ∈ R then mo = 0 and mo = 1/[(L−m)(m+ 1)] otherwise.
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