
Algorithm S1a: The algorithm which evaluates the fitness of editorial strategies.
Function fitness(editorialStrategy: editorial strategy, minBatch: integer, maxBatch: integer,
minEffective: integer, maxEffective: integer, plannedSimulationRuns: integer, criticalFitness: integer):

points ← {}; // initialise empty list of Point objects
criticalErrors ← 0;

foreach batchSize between minBatch and maxBatch do
point ← (0, 0); // initialise Point point to (x = 0, y = 0)
simulationRuns ← 0;

repeat
simulationRuns← simulationRuns + 1;
elapsedDays,effectiveReviewers,criticalError ← simulation(batchSize, editorialStrategy);

if criticalError = true then
criticalErrors← criticalErrors + 1;
break

else
point.x ← point.x + effectiveReviewers;
point.y ← point.y + elapsedDays;

end

until simulationRuns < plannedSimulationRuns;

point.x ← point.x/simulationRuns; // averaging
point.y ← point.y/simulationRuns;
points ← points ∪{point} ;

end

if criticalErrors > 0 then
return criticalErrors * criticalFitness ; // penalty for errors in strategy

else
return the area under the curve defined by points (points are interpolated by lines; area is
calculated for x ∈ [minEffective, maxEffective]; if the range of points is smaller, it is assumed
that the y value of the missing points is equal to the y value of the nearest point in points);

end

end

Algorithm S1b: The algorithm used to simulate the review process.
structure ReviewThread{

integer duration ; // duration, in days, of this review thread
boolean hasReview ; // indicates whether a review was received during the execution of this
thread
integer offset ← elapsedDays ; // number of days after which the thread was started

} ;

Function simulation(batchSize: integer, editorialStrategy: editorial strategy):
T← { ReviewThread ti | i = 1, 2, ..., batchSize}; // generate initial review threads
threadsNumber← batchSize; // initial number of threads
receivedReviews← 0;
elapsedDays← 0;
effectiveReviewers← batchSize; // initial number of reviewers

while receivedReviews < 2 do
elapsedDays← min{ti.offset + ti.duration : ti ∈ T}; // find the smallest number of days after
which at least one of the review threads ended
foreach (ti ∈ T | ti.offset + ti.duration = elapsedDays) do

if ti.hasReview = true then
receivedReviews← receivedReviews + 1

end
T← T \ ti; // remove the finished thread from the list of threads
threadsNumber← threadsNumber − 1;

end

if receivedReviews < 2 then
newThreadsNumber← editorialStrategy(state parameters); // the strategy proposes a
number of new threads that should be started based on available information

if newThreadsNumber < 0 or
newThreadsNumber + threadsNumber > batchSize or
(threadsNumber = 0 and newThreadsNumber = 0) then

return (criticalError← true);
else

T← T ∪ { ReviewThread ti | i = 1, 2, ..., newThreadsNumber}; // create new review
threads
effectiveReviewers← effectiveReviewers + newThreadsNumber;
threadsNumber← threadsNumber + newThreadsNumber;

end

end

end
return elapsedDays and effectiveReviewers;

end


