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1.  Variability of the final epidemic size near the epidemic threshold 

To characterize the sample-to-sample variability near the epidemic threshold, we 

computed the susceptibility measure defined as χ = 𝑁(〈𝑟∞
2〉 − 〈𝑟∞〉2) 〈𝑟∞〉⁄  and the 

variance measure defined as Δ = √〈𝑟∞
2〉 − 〈𝑟∞〉2/〈𝑟∞〉, where 𝑁 is the system size,  𝑟∞ 

represents the final epidemic size, and the brackets indicate the sample average over the 

100 trials.  

Figure A. The susceptibility measure (Left) and the variability measure (Right) 

calculated with the outbreak size under the variation of the index 𝝓. The parameter 

sets are all the combinations of 𝐿 = 100 , 𝑛 = 105  , 𝛼 = 0, 0.1, 0.5, 0.9, 1 , 𝜆 =
1
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For the susceptibility measure, we set 𝑁 = 1 for simplicity because the system size is 

fixed at 𝐿 = 100 and 𝑛 = 105. These two measures are plotted against the proposed 

index 𝜙  as shown in Fig A. The results show that the range of 𝜙  (between 

approximately 1 and 100) for large values of the susceptibility measure (Fig A, Left) is in 

better agreement with that for the large standard deviation of the final size in Fig 6 than 

that for the large values of the variance measure (Fig A, Right). Therefore, it is possible 

that the epidemic threshold exists within the range of 𝜙 and the susceptibility measure 

captures the large fluctuations near the threshold. 

 

2.  Mobility with hopping to an extended area 

2.1  Model 

In the main text, the destination of the hopping of each individual is limited to the 8 

sites surrounding the current site. However, in a more realistic case, the hopping to 

more distant sites would be possible. To investigate how our results change in such a 

case, here we consider the hopping to an extended area. 

As illustrated in Fig B, the destination of the hopping includes the 16 more distant 

sites (dashed arrows) in addition to the original 8 sites (solid arrows). When susceptible, 

exposed, and recovered individuals are located in a site (i, j), each individual can hop to 

one of the 8 sites at (i ± 1, j ± 1), (i ± 1, j), and (i, j ± 1), with hopping rate 𝜆 or one 

of the 16 sites at (i ± 2, j ± 2), (i ± 2, j ± 1), (i ± 2, j), (i ± 1, j ± 2),  and (i, j ± 2)  

with hopping rate 𝜆/2. For infectious individuals, the hopping rates are multiplied by 

𝛼, where 1 − 𝛼 represents the mobility reduction rate. 

 

 

 

 

 

 

 

 

 

 

Figure B. Schematic illustration of the spatial SEIR model with hopping to an 

extended area in the square lattice. Each individual randomly hops from site to site.    

Each of the susceptible (S), exposed (E), and recovered (R) individuals hops to one of the 

8 sites indicated by solid arrows with hopping rate λ or one of the 16 sites indicated by 
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dashed arrows with rate λ/2. For infectious individuals, the hopping rate is multiplied 

by the factor 𝛼  where 1 − 𝛼 represents the mobility reduction rate. 

 

2.2  Correlation between the characteristic length and the transport distance 

For the hopping to the extended area, the typical distance that an individual moves 

with a hopping rate λ during time τ is given by 2√14𝜆𝜏 which is derived in the same 

manner as in Appendix in the main text. Therefore, the characteristic length 𝑙ext
∗ , which 

represents the effective range that the pathogens are transported during the latent and 

infectious periods, 𝜏𝐸 and  𝜏𝐼, is given as follows: 

𝑙ext
∗ = 2√14𝜆(𝜏𝐸 + (1 + 𝛼)𝜏𝐼).                      (S1) 

We can confirm the positive correlation between 𝑙ext
∗  and the transport distance d 

(see the main text for the definition) as shown in Fig C, as in the case of local hopping 

(Fig 5). This means that the transport distance that pathogens are carried by infection 

increases with the characteristic length 𝑙ext
∗ . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C. The correlation between the characteristic length  𝒍𝐞𝐱𝐭
∗  and the transport 

distance d of the pathogens in the initial stage. The parameter values are all the 

combinations of 𝐿 = 500, 𝑛 = 105, 𝑝 = 1, α = 0, 0.5, 1, λ = 0.025, 0.05, 𝜏𝐸 = 2, 16, 32,

and 𝜏𝐼 = 2, 16, 32. The straight line indicates the result of line fitting for the data, 

represented as 𝑑 = 1.83𝑙ext
∗ − 0.949. 
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2.3  Relationship between the index 𝝓𝐞𝐱𝐭 and the final size 𝒓∞ 

In the main text, the final size of epidemics 𝑟∞  is approximated by a function of the 

index 𝜙 as shown in Fig 6. In the cases with hopping to the extended area, the index can 

be rewritten using the characteristic length  𝑙ext
∗  as follow: 

𝜙ext ≡ 𝑙ext
∗ 2𝑝𝜌0.                          (S2)  

The relationship between the index 𝜙ext and the final size  𝑟∞  is as shown in Fig D. The 

shape of a function in Fig D is similar to Fig 6. The more index increases, the more the 

epidemic tend to spread, while the threshold is different from that in Fig 6.  

 

Figure D. A scaling property for the final size. The numerically computed values of the 

maximum final size 𝑟∞  are plotted against the index 𝜙ext. The parameter sets are given 

by all the combinations of 𝐿 = 100, 500, 𝑛 = 103, 104, 105, 𝜏𝐸 = 0, 2, 16, 32, 𝜏𝐼 =

2, 16, 32, 𝑝 = 0.5, 𝜆 = 0.025, 0.05, and 𝛼 = 0, 0.5, 1. 

 

2.4  Discussion 

As an example of extended mobility, we have considered the cases of hopping to the 

extended area. The maximum distance that each individual can move at a unit time is 

doubled, compared with that for the hopping to neighbouring sites as studied in the 

main text. We have derived the characteristic length and shown that the transport 

distance that pathogens are carried by an infected individual is proportional to the 

characteristic length. Therefore, the index associated with the final epidemic size can be 

similarly formulated as in the case of the main text, which can predict the effect of 

parameter scaling on the final size. It is an interesting future issue to consider an index 

for other types of spatial mobility. 


