
Evaluation of existing alternative splicing event detection algorithms. Prior to initiating our study we 

reviewed the available methods and in the end found that all of those that we could identify were not 

able to address the unique aspects of this study. Our strategy was aimed specifically at maximizing the 

number of reads available for the purpose of identifying previously reported and novel (previously 

unrecognized) splicing events of the HTT gene in a condition-agnostic manner. Our goal was to identify 

novel splicing events, while the purpose of the majority of existing programs (Cuffdiff2[1], DEXSeq[2], 

MISO[3], MATS[4], SUPPA[5]) is to characterize the difference in isoform usage between conditions. 

Although the question of whether alternative splicing events are different between conditions is of 

interest, the low abundance and high complexity of the splice patterns observed in these data makes it 

difficult to quantify differences between our three conditions with individual samples using currently 

available tools. Choosing an appropriate normalization methods for concatenated samples is also not 

straightforward, as discussed below. 

To properly quantify differential alternative splicing, library adjustments (e.g. count normalization) must 

be performed on a per-sample basis to make samples across conditions comparable. By concatenating 

many or all samples together, the ability to appropriately correct for these sample specific differences is 

lost. However, as evidenced by the very low abundance of alternatively spliced reads from previously 

reported splice patterns, we would not have sufficient power to detect many of these splicing events 

without performing concatenation. Existing tools such as MISO[3] attempt to quantify the relative 

abundance of isoforms, but because, in the absence of methods to normalize our libraries, these tools 

would not optimally detect novel splice variants. Attempts at quantifying relative abundance of isoforms 

are best left to future experiments that specifically target the transcripts identified here (such as 

transcript targeted qPCR), that more closely and empirically examine the existence and relative 

abundances of specific transcripts suggested by these data. 

Finally, ‘state of the art’ computational strategies for identifying alternative splicing events use known 

isoform annotations to detect differential exon boundaries. Most of the programs (and all of the ones 

we evaluated: Cuffdiff2[1], MISO[3], AltEventFinder[6], MATS[4], SUPPA[5]) require a pre-existing set of 

isoforms to be supplied for quantification, and suggest that these isoforms be estimated from the data 

using programs such as cufflinks[7] or Scripture[8] if they are unavailable. We attempted to assemble 

the HTT transcriptome from these data but, due to the extremely high depth attained through 

concatenation, the transcript assembly was not accurate. As noted in our manuscript, intronic regions 

sometimes showed abundant coverage across the body of the gene, which would not be typical of an 

individual sample, and thus it seems the transcriptome assembly algorithm was confused and yielded 

likely false exon prediction results. The IGV screenshot below shows a track where the program 

Scripture identified “exons”. There are many false positives, and therefore we did not opt to use exiting 

transcriptome assembly approaches on these data.  



 

IGV screenshot with results of best Scripture transcriptome assembly of the superset data for a region of 

HTT. The black track has the regions where Scripture inferred a transcript, clearly demonstrating noise in 

intronic regions where true exonic expression is unlikely. This is representative of the whole 

transcriptome assembly for HTT using this data. 

  



Intronic read coverage. We investigated three other genes to better understand the prevalence of 

intronic read coverage as observed in HTT. We chose three (somewhat arbitrary) genes that had 

comparable read depth to HTT in the original sequencing experiment (~3000-5000 average reads per 

sample mapping to the gene locus): 

- PON2 (GRCh38 coords ch7:95404067-95436723), which has little alternative isoform evidence 

- TPM3 (chr1:154155154-154184567), which has moderate alternative isoform evidence 

- CPFS3L (chr1:1311347-1324859), which has extensive alternative isoform evidence 

All plots show the read depth for the body of the gene on a log scale. All genes show a similar pattern to 

HTT, with consistent intronic read coverage that is usually many orders of magnitude lower than 

flanking exons, with decreasing coverage toward the 5’ end of the gene, consistent with a poly-A tail 

selection. Interestingly, in PON2, where there is not extensive evidence of alternative splicing, we see 

varying levels of intronic coverage between introns, but within introns the coverage is consistent. The 

reasons for this are unclear, as the lack of evidence for intron retention events suggests these introns 

are not translated into protein fragments, but there seems to be no pattern in intronic depth with intron 

length. There is evidence that the exons flanking the more highly abundant introns can extend into 

longer transcripts, which may indicate alternative 3’ isoforms, but the data here is inconclusive to 

support this hypothesis. 

 

PON2 read coverage from all concatenated datasets. Read pileup in blue has a maximum of 68,885 

read depth and is plotted on a log scale . Arrows indicate where annotated transcripts and intronic 

coverage suggest putative 3’ transcripts. 



 

TPM3 read coverage from all concatenated datasets. Read pileup in blue has a maximum of 63,502 

read depth and is plotted on a log scale. Arrows indicate intronic evidence of annotated intron retention 

and alternative 3’ UTR events. 

 



 

CPSF3L read coverage from all concatenated datasets. Read pileup in blue has a maximum of 33,471 

read depth and is plotted on a log scale. 

  



Supplemental Figures A-K. All alternative splicing patterns found in HTT that have at least 10 supporting 

reads. The first subfigure (chr4:3127546-3129987) is a locus reported by Ruzo et al to be alternatively 

spliced but this pattern is not seen in these data. 
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