Appendix S1

Bias of Floquet Multiplier Estimation by Linear Regression
The linear regression or least square fit estimates the Floquet multiplier as
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where X and y are the mean of {xi, x, x3, ... , X,.1} and { x2, x3, x4, ... , X, } respectively,
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and y, = Ax; + J,,,. The expectation of the bias becomes
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Assuming a stable periodic process, or | 4 | < 1, the AR process becomes stationary and
thus has finite mean and variance, satisfying

E(x,,)=E(y,) = E(x,), and

var(x,,,) = var(y,) = var(x,) .
The mean of X, or x is the solution of

E(x,,)=AE(x,)— E(6,,,) = AE(x;) = E(x,), which is zero.
Therefore, re-writing the equation for the variance,
o’ =E(x,’)-E(x,)’=Ex’)-E(x,)*,or
0’ =E(x,’)=E(Ax, +5.,)") = PE(x")+ 2AE(x,0,,) + E(5,’) = E(x.”) .

By definition, x; is a weighted sum of d;, 2, 93, ..., 0;, none of which is correlated with
0i+1. Therefore, E (xl.é‘l. 1) becomes zero. Then,
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where o} is the standard deviation of the noise, J;. Therefore, assuming a large enough
number of cycles, the denominator of (S1) becomes
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Using (S1) and (S2), the expectation of bias can be approximated as
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By definition of X , the sum Z X; can be re-written as (n —1)x . Therefore, from (S4),
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From (S3) and (S5),
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By definition, J, and J, are independent when p #q. Therefore,
E6,6,) = 0if p#g (S7)

because

[[8,6,7,)f5)ds,ds, = | 5{ [8,£(5,)ds, Jdéq =0.
Note that the validity of (S7) does not depend on the specific shape of the distribution;
the probability density function, f, can be any function as long as the mean of the noise is
zero. Whether the distribution is symmetric like a normal and uniform distribution or
asymmetric like a lognormal distribution, (S7) remains valid.

Now note that x; is a weighted sum of J;, d,, 03, ... J;, by definition in (1). Therefore,

E(x;0;4+1) = 0 for each i, and E(Z X, HIJ = 0. From (S6),
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By definition,
x, =0,
x, =18 +3,
x, =6, + A0, + 8,

x =6+ N6, 4+, .

Therefore,
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X= (x,+x,+x3+--+x,,)
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From (S8) and (S9),
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By (S7), any term with o, J, (p #q) does not contribute to the expectation, and only terms
with 5p2 remain. Therefore,
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By definition, E(9, %) = 047, and (S10) becomes
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Bias of Floquet Multiplier Estimation by the Yule-Walker Equation
The Yule-Walker equation estimates the Floquet multiplier as
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Following the same procedure that derived above (S2), the variance of x;, ze becomes
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where o5 is the standard deviation of the noise, Jx. Assuming a large enough number of

cycles, the denominator of (S12) approximates
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By definition of x;, the numerator of (S12) becomes
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From (S13) and (S14),
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By (S7) any term with o, J, (p #q) does not contrlbute to the expectation, and only terms

with 5 remain. Therefore
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Expanding what is inside X,
i=1: A8}
i=2: P8 +18}
i=3: A5 +F8}+A8.]

i=n—1: 28+ 178 +-+ 15, "

Calculating the sum,

S (262 4 2767 41 487 )= 24
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Therefore, using E(J, 2) =0y, (S15) becomes
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