Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Unilateral Muscle Overuse Causes Bilateral Changes in Muscle Fiber Composition and Vascular Supply

Figure 8

Graphs showing changes in fiber area and capillary parameters in the exercised and non-exercised muscles after 1w, 3w and 6w of unilateral exercise.

Figures show changes in the exercised and non-exercised legs of soleus (A, C, E, G) and gastrocnemius (B, D, F, H) muscles for the following parameters; muscle fiber cross-sectional area (CSA) (A, B), the number of capillaries around each individual fiber (CAF) (C, D), the number of capillaries around fibers relative to cross-sectional fiber area (CAFA) (E, F), and capillary density (CD) (G, H). The mean group values in the figure are connected with lines to facilitate interpretation of the direction of changes after E/EMS, but the lines do not imply that the changes between the sample points represent a linear change over this period. Exercised leg is defined by continuous black line, non-exercised side by dotted line. Significant difference (p<0.05) within the exercised leg is marked with E and significant difference within the non-exercised leg is marked with N. Significant differences relative to controls are marked (c), to 1w group (1w) and to 3w group (3w). Significant differences (p<0.05) between exercised and non-exercised legs are marked with an asterisk (*). Note the overall similarities in changes in fiber area and in capillarization between the exercised and non-exercised legs in both the soleus and gastrocnemius muscles, except that there was no decrease in capillary supply after 1w and 3w of exercise in the soleus non-exercised muscle. Bars indicate SD.

Figure 8

doi: https://doi.org/10.1371/journal.pone.0116455.g008