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Overview of linear mixed models for genomic data
Here we will provide a brief overview of theory and procedures underlying the LMM-REML estimation of variance components and heritability. Such overview serves to demonstrate a natural connection with the SDS approach described in the Methods section.
The linear mixed model for fitting the effects of all the diallelic markers (e.g., SNPs) as random effects is,
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where y is a vector of n phenotypic values, β is a vector of k fixed effects including the overall mean, X is an 
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 design matrix that relates the phenotypes to the fixed effects, u is a vector of m marker random additive effects with 
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, W is an n × m mean-corrected or standardized genotype matrix with the ijth element being 
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in the mean-corrected genotype matrix or 
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 in the standardized genotype matrix, where zil is the number of copies (0, 1 and 2) of the reference allele for the lth marker of the ith individual  and pl is the frequency of the reference allele for the lth marker, and e is a vector of n residual effects with 
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. It is well known 1[, 2]
 that the expected value and variance of vector y are E(y) = Xβ and Var(y) = V = G + R, where the additive genetic covariance matrix can be 
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if W is the mean-corrected genotype matrix or 
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 if W is the standardized genotype matrix, and the residual covariance matrix is 
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. Since the standardized genotype matrix is often used in the literature for constructing the G matrix, we will only use 
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 in our subsequent development and discussion. 

Model (A1) is equivalent to the conventional mixed model with single record per individual,
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if Var(a) = 
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, where a = Wu is an n × 1 vector of the total additive genetic effects for the n individuals with 
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 and 
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being the n × n genetic relationship matrix (GRM) between individuals. In the past, the GRM has been estimated using known pedigrees among individuals (i.e., A matrix), with the ijth element of the GRM being 
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is the kinship coefficient between the ith and jth individuals 3, p. 85[]
. Now the routine use of marker genotypes for estimating the GRM allows for capturing additional genetic variation due to Mendelian sampling 
 ADDIN EN.CITE 
[4, 5]
. However, a marker-based estimate of the GRM is unbiased only if it is based on the QTL or causal variants 
 ADDIN EN.CITE 
[6-8]
.

The (k + m) mixed-model equations (MMEs) for β and u in model (A1) can be solved to obtain the best linear unbiased estimation (BLUE) of fixed effects β and the best linear unbiased prediction (BLUP) of random effects u,
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(A3)
with superscript minus one (-1) and superscript minus (-) representing matrix and generalized inverses, respectively, and 
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. The coefficient matrix in equation (A3) is also known as the C matrix 
 ADDIN EN.CITE 
[2, 9, 10]
,
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(A4)

where 
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Similarly, the (k + n) MMEs for β and a in model (A2) is given by,
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(A5)
and the C matrix can be written as,
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where 
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It should be noted that 
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exists only if 
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 is positive definite and thus investable. With high marker densities, the direct use of MMEs for obtaining the BLUP of marker effects u under model (A1) may become computationally challenging. In this case, model (A2) is used to predict the genetic effects a first and then the marker effects u is obtainable as 
 ADDIN EN.CITE 
[11, 12]
,
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(A7)
REML estimators of variance components can be obtained by several algorithms including derivative-based methods such as the Newton-Raphson algorithm and Fisher’s scoring method, EM (expectation-maximization) methods and Average Information (AI) algorithm 
 ADDIN EN.CITE 
[13, 14]
. All these methods are computationally intensive. For example, the REML estimators of genetic variance (
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(A8)
where r(X) is the rank of matrix X and tr() stands for the trace of the matrix. The solutions require computing 
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 and Cuu . Both of these matrices are difficult to compute when n is large. In implementing the AI algorithm, some of the mixed model analysis packages, such as ASREML 14[]
, have avoided the inversion of the n × n V matrix using the Gaussian elimination of the MME to obtain the AI matrix based on sparse matrix techniques. However, as 

Yang, et al. [13]

 pointed out, since the marker-based GRM matrix is usually dense, the use of the sparse matrix technique for the GRM matrix will actually lead to an extra cost of memory and CPU time. In general, the relative performance of different computing strategies is dependent on the number of individuals, the number of marker loci per individual, and the number of iterations required to solve the MMEs 
 ADDIN EN.CITE 
[15]
.
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