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1 Overview

This supplemental document provides additional details on equations referenced in the main text. These
include log p(Y,W,M,Λ), log q(W,M,Λ|α), and ∇αi log q(W,M,Λ|α). We also describe how we can sample
from the variational distribution q(W,M,Λ|α). Tables 1, 2, and 4 in the main text provide descriptions for
each variable, hyperparameter, and variational parameter.

1.1 Computing log p(Y,W,M,Λ)

The log of the joint probability of the data and hidden variables is given by

log p(Y,W,M,Λ) = log p(y1...N,w1...N, µ1...K, λ1...K)
= log p(images) + log p(weights) + log p(centers) + log p(widths)
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Here Fv refers to the vth column of the source image matrix F. Note that when we compute the variational
updates (Algorithm 2 in Table 5, main text), all of the hidden variables (w1...N,1...K, µ1...K, andλ1...K) are sampled
from q(W,M,Λ|α) as described below. We obtain one value of log p(Y,W,M,Λ) for each set of samples we
draw from q(W,M,Λ|α).

1.2 Computing log q(W,M,Λ|α)

The log of the variational distribution is given by

log q(W,M,Λ|α) = log q(w1...N,1...K, µ1...K,1...D, λ1...K|α)
= log q(weights) + log q(centers) + log q(widths)
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Note that when we compute the variational updates (Algorithm 2 in Table 5, main text), all of the hidden
variables (w1...N,1...K, µ1...K, and λ1...K) are sampled from q(W,M,Λ|α) as described below. We obtain one value
of log q(W,M,Λ|α) for each set of samples we draw from q(W,M,Λ|α).

1.3 Computing ∇αi log q(W,M,Λ|α)

Recall that the hidden variables include the per-image source weights w1...N,1...K, the source centers µ1...K, and
the source widths λ1...K. Let αi be a set of variational parameters that govern the (approximate) marginal
posterior over one hidden variable in log p(Y,W,M,Λ). For example, a given αi might contain the mean
µ̃wn,k and log precision κ̃wn,k that govern the marginal posterior of wn,k. To update αi, we first need to sample
each hidden variable from q(W,M,Λ|α), and then we compute the gradient of q(W,M,Λ|α) with respect to
αi, using those samples.

Because we constructed q(W,M,Λ|α) to fully factorize, it is straightforward to compute the gradient
of q(W,M,Λ|α) with respect to a given αi—we can simply compute the gradient with respect to αi of the
corresponding factor of q(W,M,Λ|α), ignoring the other factors. Further, since the marginal distributions
over the source weights, centers, and widths are all constructed to be univariate Gaussians (Equation S2),
each of these gradients will have a similar form. Therefore, for notational convenience, we will find it useful
to define a function for computing the derivative of a univariate log Gaussian, logN
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These functions allow us to easily define the gradients of q(W,M,Λ|α) with respect to each αi. To keep track
of each set of variational parameters, we will label the sets according to the hidden variable whose marginal
posterior they govern:
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1.5 µk,d

∇µ̃µk,d
log q(W,M,Λ|α) = z1

(
µk,d, µ̃µk,d , exp(κ̃µk,d )−1

)
(S7)

∇κ̃µk,d
log q(W,M,Λ|α) = z2

(
µk,d, µ̃µk,d , exp(κ̃µk,d )−1

)
(S8)

1.6 λk
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1.7 Sampling from q(W,M,Λ|α)

Sampling from q(W,M,Λ|α) yields one value for each of the hidden variables, including the per-image
source weights w1...N,1...K, the source centers µ1...K, and the source widths λ1...K. Because q(W,M,Λ|α) fully
factorizes, each of these variables are drawn independently, as shown in Algorithm S1. To draw M samples
from q(W,M,Λ|α), we simply repeat this procedure M times.

Algorithm S1: Sampling from q(W,M,Λ|α).

for k = 1 to K do
for d = 1 to D do

Pick dimension d of source k’s center µk,d ∼ N
(
µ̃µk,d , exp(κ̃µk,d )−1

)
end
Pick source k’s width λk ∼ N

(
µ̃λk , exp(κ̃λk )

−1
)

for n = 1 to N do
Pick source k’s weight in image n wn,k ∼ N

(
µ̃wn,k , exp(κ̃wn,k )

−1
)

end
end
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