SECTION S1: DESIGN OF GRINDER EXPERIMENTS

We detail here the production of the simulated data produced by the shotgun/amplicon read simulator
Grinder [I]. These datasets were designed to mimic reads generated by a variety of Illumina platforms,
and hence we set the read-length distributions to be normally distributed with a variety of means which
are summarized in table S1. An equal number of datasets were generated consisting of the following

Table S1: Grinder experiment read lengths.

Mean | Standard Number of
(bp) | Deviation (bp) | Experiments
35 0 96

50 0 96

100 0 96

150 5 96

250 20 96

300 25 96

450 50 96

800 100 96

number of reads: 10K, 100K, 1M, 5M. Three different diversity values were chosen to be 10, 20, and
50 with abundances modeled by using the following four distributions: linear, uniform, power-law with
parameter 0.750 and exponential with parameter 1. Homopolymers of length n were generated by a
normal distribution with mean n and variance 0.15 % /n as in [2]. Sequencing errors were designed
to model Illumina errors and used the 4** degree polynomial in [3] with 80% of these errors set to be
substitutions, while the remaining 20% set to be indels. Reference sequences were sampled proportionally
to their length to mimic the length bias seen in WGS datasets.

SECTION S2: QUIKR METHOD TECHNICAL DETAILS

Mathematical Formulation. Given the alphabet A = {A,C,T, G}, let A™ denote the set of all words v
of length |v| = n on A, and let A* = UnZO A" be the set of all finite words on A. Hence words containing
non-ACTG characters are ignored. Let D = {d1,...,dy} be a database of genomic sequences d; € A*

and let S = {s1,...,s:} be a set of sample sequences (the reads to be classified). Fix a k-mer size and
endow A¥ = {v1, ..., vy} with the lexicographic order. Let occ,(w) represent the number of occurrences
(with overlap) of the subword v in the word w. That is, for w,v € A", let

(A1) oce,(w) = | : wjwye1 -y 1 = v} .

For j=1,...,M and i = 1,...,4"%, define the k-mer training matriz entrywise as

(A.2) AW = _oeuldy)

B dy — k41

The matrix A®) satisfies AE? > 0 and is column-normalized, i.e.

4k:
(k) _ .
(A.3) ZAi,j =1 forallj=1,..., M.
i=1
Define the sample k-mer frequency vector entrywise for i = 1,...,4* as

(k) 23:1 occy, (s;)

U —T t :
I=1 Zj:l occy, (s5)

1

(A.4)



We assume even coverage of each genome. That is, we assume that the composition of the bacterial
community is represented by a probability vector z € RM satisfying the following: given a database
sequence d € D, the set of reads {s¢,..., sfd} C S coming from this sequence, and x4 the concentration
in the sample of the bacteria corresponding to sequence d, for each i the following holds:

Z;d:l 0CCy, (5?) ocey, (d)
(A.5) y — =Ta X g o

1=1 Zjd:1 0CCy, (3?) 211 0y, (d)
This means that the total k-mer count of all the read fragments corresponding to the sequence d is
proportional to the k-mer count of the sequence d itself, with the proportionality constant being equal
to the concentration of the sequence d in the sample S. Our assumptions imply that

(A.6) AR g = 5k,

We will try to recover the probability vector x satisfying x; > 0 for all j = 1,..., M and Z]A/il z; =1
from information in the form of equation ([AG).

Nonnegative Basis Pursuit Denoising. Given that a bacterial community is typically distributed as
a sparse vector = (a small percentage of all extant bacteria are actually present in a given sample), we
pursue sparsity-promoting minimizations involving the ¢;-norm. Basis Pursuit [4], called (BP) below, is
one of the most popular methods. In our situation, it is natural to include the nonnegativity constraint,
leading to (BP>(). We further modify the optimization by relaxing the equality constraint to arrive at
the regularized problem (REG?). Thus, the three optimization problems considered are:

(BP) minimize ||z||1 subject to A® 7 = k),
z€RM

(BP>o) minimize ||2]; subject to A® 2 = s and 2 > 0,
zE

(REG?) minimize |21 + 2| AR 7 — ()| |2 subject to z > 0,
z€R

It can be demonstrated, thanks to (A3]), that (BP) and (BP>() are equivalent in the sense that z is
a solution of (BP) if and only if it is a solution of (BP>¢), and that the latter is approached by solutions
of (REG?) when A — oo, see [].

We shall solve (REG?) since it has the notable advantage of being transformed into a nonnegative
least squares problem. Indeed, with

- 1...1 0
(k) .__ (k) .
the minimization (REG?) is equivalent to
(NNLSQ) miniﬂg&ize [|AR) 7 — 5(F)||2 subject to z > 0.
ze

Algorithmic Implementation. To solve (NNLSQ) we utilized MATLAB’s [5] implementation of 1sqnonneg ()
which in turn is an implementation of the iterative Lawson-Hanson algorithm described in [6]. To calcu-

late the matrices A®) and the vector s*) we used a custom SML [7] subword counting program written

by Christopher Cramer and compiled for Linux using MLton []].

Selection of A\. Parameter tuning is a common issue to be addressed when using regularized optimization
procedures to solve linear inverse problems [9HIT]. Two common methods include Generalized Cross
Validation [12] and the L-Curve method [I3]. The adaptive method by which we select the A used in
(A7) is similar in spirit to the L-Curve method. In every case, it was observed that as a function
of A\, the number of iterates necessary to solve (NNLSQ) via the Lawson-Hanson algorithm was linear,
then exponential, then non-increasing. Figure S1 demonstrates this phenomenon for a sample dataset
by plotting the number of iterates as a function of A. Let its(\) be the number of iterates needed to



solve (NNLSQ) via the Lawson-Hanson algorithm. It was also observed that a was most accurately
reconstructed at the A for which the number of iterations experienced its greatest increase. Figure S2
demonstrates this fact for an example dataset by plotting the ¢;-error as well as %its()\) as a function
of A, where -Lits(\) denotes the first differences of its(\).
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Figure S1: Number of iterates to solve (NNLSQ) as a function of A.
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Figure S2: /(;-error and first difference of number of iterates needed to solve
(NNLSQ) as functions of .

With this information in hand, the following adaptive approach was used to choose A. First, let
Lits(Ng:r,)) designate the first differences of its(A) when A ranges from to to ¢1 in increments of I.
We allowed A to increase in increments of 100 from A = 1 until a smoothing spline approximation
of %its()q;mo;tl) was shown to be negative for some t;. A smoothing spline approximation was uti-
lized because %its()\to;[:tl) is noisy when increasing A in such large increments. Next, the maxi-
mum of %its()q:wo:tl) with respect to A was identified, call it A\ = ¢5;. Then the maximizer of



%its()\tM_100;10:tM+100) was used as the value of A to solve (NNLSQ). Clearly this method can be
refined further by taking smaller and smaller increments surrounding the maximizer of %its()\), but
we found this two-step approach to provide sufficient speed and accuracy improvements over current
methods.
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