
Section S1: Design of Grinder Experiments

We detail here the production of the simulated data produced by the shotgun/amplicon read simulator
Grinder [1]. These datasets were designed to mimic reads generated by a variety of Illumina platforms,
and hence we set the read-length distributions to be normally distributed with a variety of means which
are summarized in table S1. An equal number of datasets were generated consisting of the following

Table S1: Grinder experiment read lengths.

Mean Standard Number of
(bp) Deviation (bp) Experiments
35 0 96
50 0 96
100 0 96
150 5 96
250 20 96
300 25 96
450 50 96
800 100 96

number of reads: 10K, 100K, 1M, 5M. Three different diversity values were chosen to be 10, 20, and
50 with abundances modeled by using the following four distributions: linear, uniform, power-law with
parameter 0.750 and exponential with parameter 1. Homopolymers of length n were generated by a
normal distribution with mean n and variance 0.15 ∗ √

n as in [2]. Sequencing errors were designed
to model Illumina errors and used the 4th degree polynomial in [3] with 80% of these errors set to be
substitutions, while the remaining 20% set to be indels. Reference sequences were sampled proportionally
to their length to mimic the length bias seen in WGS datasets.

Section S2: Quikr Method Technical Details

Mathematical Formulation. Given the alphabet A = {A,C, T,G}, let An denote the set of all words v
of length |v| = n on A, and let A∗ =

⋃

n≥0 A
n be the set of all finite words on A. Hence words containing

non-ACTG characters are ignored. Let D = {d1, . . . , dM} be a database of genomic sequences dj ∈ A
∗

and let S = {s1, . . . , st} be a set of sample sequences (the reads to be classified). Fix a k-mer size and
endow A

k = {v1, . . . , v4k} with the lexicographic order. Let occv(w) represent the number of occurrences
(with overlap) of the subword v in the word w. That is, for w, v ∈ A

n, let

occv(w) = |{j : wjwj+1 · · ·wj+|v|−1 = v}|.(A.1)

For j = 1, . . . ,M and i = 1, . . . , 4k, define the k-mer training matrix entrywise as

A
(k)
i,j =

occvi
(dj)

|dj | − k + 1
.(A.2)

The matrix A(k) satisfies A
(k)
i,j ≥ 0 and is column-normalized, i.e.

4k
∑

i=1

A
(k)
i,j = 1 for all j = 1, . . . ,M.(A.3)

Define the sample k-mer frequency vector entrywise for i = 1, . . . , 4k as

s
(k)
i =

∑t

j=1 occvi
(sj)

∑4k

l=1

∑t

j=1 occvl
(sj)

.(A.4)

1

2

We assume even coverage of each genome. That is, we assume that the composition of the bacterial
community is represented by a probability vector x ∈ R

M satisfying the following: given a database
sequence d ∈ D, the set of reads {sd1, . . . , sdtd} ⊂ S coming from this sequence, and xd the concentration
in the sample of the bacteria corresponding to sequence d, for each i the following holds:

∑td
j=1 occvi

(sdj)
∑4k

l=1

∑td
j=1 occvl

(sdj)
= xd ×

occvi
(d)

∑4k

l=1 occvl
(d)

.(A.5)

This means that the total k-mer count of all the read fragments corresponding to the sequence d is
proportional to the k-mer count of the sequence d itself, with the proportionality constant being equal
to the concentration of the sequence d in the sample S. Our assumptions imply that

A(k)x = s(k).(A.6)

We will try to recover the probability vector x satisfying xj ≥ 0 for all j = 1, . . . ,M and
∑M

j=1 xj = 1

from information in the form of equation (A.6).

Nonnegative Basis Pursuit Denoising. Given that a bacterial community is typically distributed as
a sparse vector x (a small percentage of all extant bacteria are actually present in a given sample), we
pursue sparsity-promoting minimizations involving the ℓ1-norm. Basis Pursuit [4], called (BP) below, is
one of the most popular methods. In our situation, it is natural to include the nonnegativity constraint,
leading to (BP≥0). We further modify the optimization by relaxing the equality constraint to arrive at
the regularized problem (REG2

1). Thus, the three optimization problems considered are:

minimize
z∈RM

||z||1 subject to A(k)z = s(k),(BP)

minimize
z∈RM

||z||1 subject to A(k)z = s(k) and z ≥ 0,(BP≥0)

minimize
z∈RM

||z||21 + λ2||A(k)z − s(k)||22 subject to z ≥ 0,(REG2
1)

It can be demonstrated, thanks to (A.3), that (BP) and (BP≥0) are equivalent in the sense that x is
a solution of (BP) if and only if it is a solution of (BP≥0), and that the latter is approached by solutions
of (REG2

1) when λ → ∞, see [4].
We shall solve (REG2

1) since it has the notable advantage of being transformed into a nonnegative
least squares problem. Indeed, with

Ã(k) :=

[

1 · · · 1
λA(k)

]

, s̃(k) :=

[

0

λs(k)

]

,(A.7)

the minimization (REG2
1) is equivalent to

minimize
z∈RM

||Ã(k)z − s̃(k)||22 subject to z ≥ 0.(NNLSQ)

Algorithmic Implementation. To solve (NNLSQ) we utilized MATLAB’s [5] implementation of lsqnonneg()
which in turn is an implementation of the iterative Lawson-Hanson algorithm described in [6]. To calcu-
late the matrices A(k) and the vector s(k) we used a custom SML [7] subword counting program written
by Christopher Cramer and compiled for Linux using MLton [8].

Selection of λ. Parameter tuning is a common issue to be addressed when using regularized optimization
procedures to solve linear inverse problems [9–11]. Two common methods include Generalized Cross
Validation [12] and the L-Curve method [13]. The adaptive method by which we select the λ used in
(A.7) is similar in spirit to the L-Curve method. In every case, it was observed that as a function
of λ, the number of iterates necessary to solve (NNLSQ) via the Lawson-Hanson algorithm was linear,
then exponential, then non-increasing. Figure S1 demonstrates this phenomenon for a sample dataset
by plotting the number of iterates as a function of λ. Let its(λ) be the number of iterates needed to

3

solve (NNLSQ) via the Lawson-Hanson algorithm. It was also observed that x was most accurately
reconstructed at the λ for which the number of iterations experienced its greatest increase. Figure S2
demonstrates this fact for an example dataset by plotting the ℓ1-error as well as d

dλ
its(λ) as a function

of λ, where d
dλ

its(λ) denotes the first differences of its(λ).

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

λ

its
(λ

)

Figure S1: Number of iterates to solve (NNLSQ) as a function of λ.

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ℓ
1
er
ro
r

λ
0 20 40 60 80 100 120 140 160 180 200

−2

0

2

4

6

8

10

12

d d
λ
it
s
(λ
)

Figure S2: ℓ1-error and first difference of number of iterates needed to solve
(NNLSQ) as functions of λ.

With this information in hand, the following adaptive approach was used to choose λ. First, let
d
dλ

its(λt0:I:t1)) designate the first differences of its(λ) when λ ranges from t0 to t1 in increments of I.
We allowed λ to increase in increments of 100 from λ = 1 until a smoothing spline approximation
of d

dλ
its(λ1:100:t1) was shown to be negative for some t1. A smoothing spline approximation was uti-

lized because d
dλ

its(λt0:I:t1) is noisy when increasing λ in such large increments. Next, the maxi-

mum of d
dλ

its(λ1:100:t1) with respect to λ was identified, call it λ = tM . Then the maximizer of

4

d
dλ

its(λtM−100:10:tM+100) was used as the value of λ to solve (NNLSQ). Clearly this method can be

refined further by taking smaller and smaller increments surrounding the maximizer of d
dλ

its(λ), but
we found this two-step approach to provide sufficient speed and accuracy improvements over current
methods.

References

1. Angly FE, Willner D, Rohwer F, Hugenholtz P, Tyson GW (2012) Grinder: a versatile amplicon and shotgun sequence
simulator. Nucleic acids research 61: 1–8.

2. Richter DC, Ott F, Auch AF, Schmid R, Huson DH (2008) MetaSim: a sequencing simulator for genomics and

metagenomics. PloS ONE 3: e3373.
3. Korbel JO, Abyzov A, Mu XJ, Carriero N, Cayting P, et al. (2009) PEMer: a computational framework with

simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data.
Genome biology 10: R23.

4. Foucart S, Koslicki D (2013) Sparse Recovery by means of Nonnegative Least Squares. IEEE Signal Processing
Letters, In Print .

5. MATLAB 2012b, The MathWorks, Inc., Natick, MA, USA.
6. Lawson C, Hanson R (1974) Solving Least Squares Problems. Prentice-Hall, 350 pp.

7. Milner R, Tofte M, Harper R (1997) The Definition of Standard ML. Cambridge, MA: MIT press, 128 pp.
8. Weeks S (2006) Whole-program compilation in MLton. In: Proceedings of the 2006 workshop on ML. New York,

NY.: ACM, p. 1.

9. Vogel C (2002) Computational Methods for Inverse Problems. Philadelphia, PA: SIAM, 183 pp.
10. Bertero M, Boccacci P (1998) Introduction to Inverse Problems in Imaging. London: Institute of Physics Publishing,

352 pp.
11. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a

sparsity constraint. Comm Pure Appl Math 57: 1413–1457.
12. Golub G, Heath M, Wahba G (1979) Generalized cross-validation as a method for choosing a good ridge parameter.

Technometrics 21: 215–223.

13. Hansen P, O’Leary D (1993) The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J Sci
Comput 14: 1487–1503.

	Section S1: Design of Grinder Experiments
	Section S2: Quikr Method Technical Details
	Mathematical Formulation
	Nonnegative Basis Pursuit Denoising
	Algorithmic Implementation
	Selection of

	References

