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In this supplementary material, our goal is to compute the four first moment of the Ripley’s K-function
K(r,n). Computation of E{K(r,n)} and var{K(r,n)} can be found in [1], however we refine here the
computation of var {K(r,n)} for a small number of points in section 2 and we reproduce the computa-
tion of E{K(r,n)} for sake of clarity in section 1. Finally, the third and the fourth moments of K(r,n),

E {(K(r7 n) —E{K(r, n)})d} and E {(K(r, n) —E{K(r, n)})4}, are computed in sections 3 and 4.

1 computation of E{K(r,n)}

Denoting ¥(x,y) = 1{jx—y|<r}k(X,¥), we decompose the symmetric function ¢(x,y) as

B0 y) = 3 (600 y) + (v %), (1)
and we re-write K (r,n) as
a a 1
K(r,n) = mg;b(xd’) = m§§(¢(x7w+w(y’x>)- (2)

Then, assuming a uniform distribution of points in 2 and denoting
ar.=nn—-1)...(n—r+1)a " pa, (3)

where 19, is the Lebesgue measure on R?", we have [1]

B} = s | o y)dos(x.y), (1)
that is
E{K(rn)} = | 4(x,y)das(x,y). (5)
nn—1) Joe
Denoting
ho= [ dey)itey) = [ Lgayienkxy)diy). (6
we re-write
E{K(rm)) = 2, ™

and we further compute Iy by considering local polar coordinates y(ry, fy) around x(0,0) in Q, with 0 < ry, <7

and —% <f, < % where ©(ry) is the part of the perimeter b(x,ry) that is in Q:
(2m = O(ry)) ry = [0b(x,ry) N A, (8)

that is

om — O(ry) = |8b(x’:yy) nol_ k(iﬁy). (9)




We then have
Iy = // 2nrydrydx = amr?, (10)
oJo
Finally, reinjecting Iy (Eq. (10)) in Eq. (7) we have
Iy 9
E{K(r,n)} = — =ar~. (11)
a

Integrals (1 j)j>0 that are introduced all along this supplementary material are summarized with their numerical
value in Supplementary Table S1.

2 computation of var {K(r,n)} = E {(K(T, n) —E{K(r, n)})2}

We first introduce the centered (E = 0) estimator Ko(r,n):

Ko(r,n) = K(r,n) —E{K(r,n)} = W 3 dol(x,y), (12)
XAy
where
bolx.3) = 60e.y) - " (13
We then have
var {K (r,n)} = E{K2(r,n)} = ——E{ [ Y ootx.y) | ¢, (14)
(n(n—1)* ) \ &

that we expand as

2

D odoxy) | =asd dixy) + as Y do(x,¥)bo(x,2)

XAy XAy XAYFZ

+ a4 Z ¢O(X7 y)¢0(Z7W). (15)
XAy FLZFEW

Computing the number of terms in each sum of the equation above, we obtain that
(n(n —1))* = agn(n — 1) + agn(n — 1)(n — 2) + agn(n — 1)(n — 2)(n — 3), (16)
that is
n* —2n% +n? = ayn* + (a3 — 6a4)n® + (a2 — 3az + 1lag)n® + (—az + 2a3 — 6ay). (17)

Identifying polynomial coefficients, we obtain that

az =2,a3 =4, and a4 = 1, (18)
leading to
_ a? 2
var {K(r,n)} = (= 1)) 2E );%(XA’)
+ AEQ Y do(xy)eo(x,y) p +ES D o(x,y)do(zw) ¢ | (19)

x#y+2 xAy£itw



Considering that x and y are uniformly distributed in Q, Eq. (19) becomes

I} = s (2 sy ey) (20)

+ 4/ ¢O(X,y)¢0<X,W)dO¢3(X,y,W) +/ ¢0(X7Y)¢0(W7Z)da4(X7YaW7Z))
Q3 04

where «,. is given by Eq. (3). Because

$o(x,y)das(x,y) = [ ¢(x,y)daz(x,y) —amr® =0, (21)
Q2 Q2
we have
/ ¢0(x,y)¢0(w,z)da4(x,y,W,z) = 0[4/ d)O(X? y)d(XaY) / ¢0(W,Z)d(W,Z) =0. (22)
04 Q2 Q2
Then, denoting 8 = %’2, we expand the two remaining integrals of Eq. (46)
Po(x,y)? = o(x,y)* = 286(x,y) + 5%, (23)
and
P0(%,¥)b0(x,2) = $(x,¥)d(x,2) — B (d(x,y) + 6(x,2)) + 57, (24)
Because [, ¢(x,y) = armr? = a?f, we have
Bedexy) = [ oty - 2900xy) + Pdixy) = [ oxy)? - a6, (25)
Q2 Q2 Q2
and
| onbxyentxadiey.a) = [ otxy)otadixy.z) - o', (20)
Consequently, we are now left with the computations of the integrals
Il = 02 ¢(X7 Y)2d(xv Y) (27)
and
= [ obxy)ox 2)d(x.y.2) (28)
03

We first observe that for points x that are at a distance |x — 9Q| > 2r from the domain boundary, there is
no edge correction for any points y,z inside the domain Q: k(x,y) = k(y,x) = 1fx—y|<r}. Consequently,
integrals I; and Iy can be decomposed as follows

L = /Qz1{\X789|>2r}1{|xfy|<r}d(xay) (29)

1
+ 1/92 1(x—o9|<2} L{jx—y|<r} (k(x,¥) + k(y, %)) d(x,y)

and,

I, =

S~

. 1 ix—o0|>2r} L {|x—y|<r} 1{|x—z|<r}d(X, ¥, 2) (30)

1
+ 7 /m 1gx—v0l<2r} L{jx—y|<r} 1 {|x—z|<r} (B(X,¥) + k(y, X)) (k(x,2) + k(z,%)) d(X,y,2).



Because [, 1{x—a0|>2r1dx = |Q| — 2r|0Q| = a — 2ur, where u = |09 is the perimeter of the domain Q, and
that for all x, such that [x — Q| > 2r, [, 1{jx—y|<r}dy = 77?, we have

/Q2 1{jx—00|>2r} L{jx—y|<rd(x,¥) = (a — 2ur)mr?, (31)
and
2
/m 101520} Loyl <r Loyl <} (%, ¥, 2) = (@ = 2ur) (7r?) " (32)

Consequently, denoting A, = {y € 2 such that |x — y| < r given that |x — 9Q| = h}, I; and I5 reduce to

I = (a—2ur)mr? 4 5 /O ' /A (k) h)? dydh (33)
and,
I, = (a—2ur) (71'7“2)2 + %/0 ' (/A (k(h,y) + k(y,h)) dy) dh. (34)

Assuming that the edge of the domain boundary 02 is straight where it intersects b(x, |x — y|), k(h,y) and
k(y,h) can be determined analytically [2], and are given by:

. -1
k(h,y) = (1 ! arccos <mm|(|x—§|/,h)> , and,
T X—y

k(y,h) ~ (1 ~ L arccos (minﬂx —yhly = m'))_l . (35)

m Ix -yl

However, using analytical expressions (35) in Eq. (33)-(34) does not lead to closed form expressions for I
and Is. We thus use a finite difference algorithm with respect to the variable h ( n, = % steps of size
dh = 0.001) coupled with a Monte-Carlo sampling of y in each Apj=jan, 1 < J < my, (ny = 1000 random

draws y;, 1 <14 < n), and approximate

2r np 1 Ny
| ety b )P dyan 3 1A = S (k) + ki) di (36)
0 h j=1 Y o
and
27 2 nn 1 ny 2
/ (/A (k(h,y) + k(y,h)) dy) dh =) <|Ah].|n > (k(hy,yi) + k(yi, hj))> dh (37)
0 h j=1 Y o
with [3]
1 ) . N 2
|Ap,| = mr* | 1 — = | arccos (h]> + hy 1- (hj> . (38)
™ T T r
Finally, we obtain following numerical approximations
2r
%/ / (k(h,y) + k(y, h))? dydh =~ ru(rr2)2.305, (39)
0 Ap

and

u

1 /Ozr (/A (k(h,y) + k(y, h)) dy> 2 dh ~ ru(mr?®)*2.0066. (40)



Reinjecting approximations (39) and (40) in (33) and (34), we have
I, = a2 (1 " 0.305ﬂ) and I, = a2 (1 n 0.0066%) ,
a a
leading to

. PA(x,y)d(x,y) = I — a®B* = a? (B (1 + 0.305%> - ﬂ2) ,

and
/ bo(X,y)do(x,2)d(X,y,2) = I — a®B* = a*5? (0.0066%) .
Q3 a

Finally, we obtain

wr () = o o [ ety £ [ eyt widastey.w) )
- né“Q 3 (5 (1 + 0.305%) — B +2(n—2)B? (0.00GG%))
that is
var {K(r,n)} = n(i‘f 3 (8(1+ 0.305%) +52 (~1+20n - 2)0.0066%)) .

which reduces for n > 1 to

var {K(r,n)} ~ % (6 (1 + 0.305%) + B2 (—1+0.0132) %) .

where A = 7 is the empirical density of points. Formula (46) is in agreement with [1], page 40.

3 computation of E {(K(r, n) —E{K(r, n)})3}

USng ¢0(X7 Y) = ¢(X7 Y) - 67 we have

113 ’
B{(K(r,m) ~E{K(rnm)D'} = s { (Z ¢o<x,y>) .

X2y

3
We expand (Exiy oo(x, y)) as

3
(Z ¢o<x,y>) =>5
XAy J

6
=2
where \S; is the sum of the terms containing j different points:

Sy = GQZ¢8(X7}’)
x#y

S = a} > Gxy)e(x.2)+a3 Y do(x,y)bo(x,2)0(y,2),
S— xtyta

S4 = a’éll Z ¢%(Xa y)(bo(Z,W) + a’ézl Z ¢0(X7y)¢Q(X,Z>¢O<X,W)
Xy Fatw Xty Fatw

+ ai Z ¢0(X, y)¢O(Y7Z)¢O(Z)W)’
xtyFatw

Ss = as > do(x,y)do(zW)o(x,T),
xAyAzAWET

and S6 = Qg Z ¢O (X, y)¢0 (Z7 W)(bO(r) u))
xAyFaFwrFu

(45)

(46)



and we then have
3 a? °
E{(K(r,n) ~E{K(rnn)})’} = — 3 S E{s;}. (50)
(n(n—1))" 5

We are thus left with the computations of each mean E(S;), for 2 < j < 6. We begin with the computation of
multiplicative coefficients as, ai, a3 . .. as and ag in following sub-section 3.1, and will perform the computations
of each term E(S;) in sub-section 3.2.

3.1 computation of coefficients ay,a}, ... ag

Computing the number of terms appearing in each sum of Eq. (48), we obtain

2 3
(n(n—1))° = azda + Y _alds + > ajdu + ass + agds, (51)
j=1 j=1
where &; = n(n—1)...(n — i+ 1) is the number of ways to choose an ordered subset of ¢ points among n.
Expanding Eq. (51), we obtain

3
n® —3n%+3nt —n® = agn® 4+ (—16ag + as)n® + (85a¢ — 10as + Zai)n‘*
j=1
3. 2
+ (—225a6+35a5 — 6 _al+ > al)n®
=1 j=1

3 2
+ (27406 — 5005 +11) aj — 3> a} + ag)n’

j=1 j=1
+ (—120+24a; — 6> a} +2) a} —az)n, (52)
j=1 j=1
Identifying polynomial coefficients in Eq. (52), we have
ay =4, a} =323 a} =38,a5 =12 and a6 = 1. (53)
j=1 j=1

Then, because ¢g(x,y) is a symmetric function there is 3 x 2% = 24 ways of writing ¢2(x,y)¢o(x,z). Indeed,
there is 3 possible positions for ¢o(x,z) and 2 ways to write each symmetric term. Consequently, ai = 24,
and a3 = Z?:l aj — a} = 8. Similarly, there is 3 x 23 = 24 ways of writing ¢3(x, y)do(z, W), but in that case,
the expression is symmetric in x and y as well as in z and w. Consequently, ¢Z(x,y)¢o(z, w) is counted 4
timesin >0 0>,y 3 (x,y)¢o(z, w) and a} = 24/4 = 6. Concerning a3, there is 6 x 23 = 48 ways of writing
bo(x,y)bo(x,2)po(x,w) and the expression is symmetric in y, w and z leading to a% = 48/6 = 8. Finally,
there is 48 ways of writing ¢o(x,y)oo(y,2)do(z, w) and the symmetric role of the couple of points (x,y) and
(z,w) leads to aj = 24. We can check here that aj + a% + a3 = 38.

3.2 computation of E{S;} for 2 <j <6
3.2.1 computation of E {S,}

First, assuming a uniform distribution of the points inside 2 and using . = n(n —1)...(n —r + 1)a™"pap,
we have

B{S2) =4 | o}xy)doalx.y). (51)



that we expand as

B{S:) = don [ (00cy) ~380%(xy) + 35 0(x.y) - 67) d(x.y)

40[2 ( ¢3(Xa Y)d(xv y) - 3511 + 352-[0 - a2ﬁ3> . (55)
02

We are thus left with the computation of I3 = [ ¢*(x,y)d(x,y) that we decompose as in section 2 (see Eq.
(33) and (34)):

_ _ 2 U 2 3
Iy = . #(x,y)d(x,y) = (a — 2ur)mr? + g/o /A;L (k(h,y) + k(y,h))” dydh, (56)

where k(h,y) and k(y, h) are given by Eq. (35). A finite difference scheme with respect to variable h coupled
with a Monte-Carlo sampling of y in A}, leads to the approximation

Is ~ a28 (1 n 0.76%) . (57)
Finally, using Supplementary Table S1 in Eq. (55), we obtain

E{S:)} ~ 4dn (5 (1 + 0.76%> —3p8? (1 n 0.305%)) (58)

3.2.2 computation of E {S3}

Denoting
B{s}} = as [ éBxy)nlxa)dix.y. 2 (59)
and
B3} = | duxy)on(x 2hon(y 2)dlx. ). (60)
we have
E{Ss} =24E {S;} +8E {53}, (61)

Expanding E {S%} and using Monte-Carlo numerical integration to account for ) boundaries we find that
E {S3} ~ 0. We then expand E {53}, as

B{52) = aa ([ 06xy)otx a0ty dlx.y.2) - 3552 + 3051y - ). (62)
and are left with the computation of
L= / 0(x,7)0(x, 2)6(y, 2)d(x, y, 7). (63)
03

First, for x such that |x — 9| > 2r, there is no boundary correction and we decompose I, = Ii* 4 I}°order
where

nro= /Qs1{\x73m>2r}1{|xfy|<r}1{|xfz\<r}1{\yfz\<r}d(x’y’Z)

= (G, — 2’1,1/7”) /92 1{|x,y|<r}1{|x,z|<r}]—{‘y7z|<r}d(y) Z)7 (64)

and

2r
Igorder _ g / / (kj(h,y) + k(yv h))
8 0 Ap

/A (k(h,2z) + k(z,h)) 1{|y—zj<r} (k(y,2) + k(z,y)) dzdydh. (65)



We then rewrite 1" as
I" = (a — 2ur) (7r7‘2)2 Pr{ly — z| < r given that (y,z) € b(x,r)}. (66)

Because y and z are uniformly distributed in b(x,r), we have

1
Pr{ly — z| < r given that (y,z) € b(x,7)} = 72/ |b(y,r) Nb(x,7)|dy (67)
(7'('7”2) b(x,r)

where b(x,7) and b(y,r) are the ball centered at x and y with radius r. Considering local polar coordinates:
y(0 <ry <70 <6, <27) around x(0,0), we have

r 2m
I = (a— QUT)/ _0/0 Alry, Oy, r)ryd(ry, by) (68)

y=0

where A(ry,60y,7) = |b(x(0,0),7) Nb(y(ry,0y),r)| is equal to [3]

_ — 205 (X =Y Jap2 2
A(ry, by, 1) = A(ry,r) = 2r-cos (2r) 5 4r2 — 3. (69)

Finally, a direct integration I{" using Eq. (69) yields

Ii" = (a — 2ur)2mr? (7; — 3\8/?;> , (70)
that is
Ii" = (a — 2ur)a®p? (1 - 34\7/?) ~ (a — 2ur)a®(%0.587, (71)
On the other hand, a numerical integration of I}°74" gives
fhorder a3ﬂ21.38%, (72)
leading to
Iy = Ii" 4 [horder & 352 (0.587 + 0.207%) . (73)
Finally, reinjecting Eq. (73) in Eq. (62), and given that E {S3} ~ 0, we obtain
E{Ss} ~ SE {S2} = 8as (52 (0.587 + 0.207%) - 53) . (74)
3.2.3 computation of E{S,}
We decompose the computation of E {S,} as follows
E{Si} =a;E{Si} +aiE{S;} + afE{Si} = 6E{S;} +8E{S;} +24E {53} (75)
with
B{S}} = s | 63xy)on(m widx.y. 2 w) (76)
E{Si} =0 /94 P0(%,¥)¢0(x,2)00(x, W)d(X,y,2, W), (77)
and,

E {Sij} =y /Q4 bo(X,¥)b0(y,2)0(z, W)d(x,y,z,W). (78)



First [, ¢o(z, w)d(z, w) = 0 leads to E {5} } = 0. We then expand E {57} as

E{Si} = a4 (/ P(x,¥)0(x,2)p(x, w)d(x,y,2,w) — 3fals + 35%a’Iy — a453) : (79)
Q4
and decompose [, (X, y)d(x,2)p(x, w)d(x,y,2, W) as
o(x,y)0(x,2)d(x, w)d(x,y,2,Ww) = (a—2ur)d®s®
Q4
U 2r 3
— k(h k(y,h))d dh.
e 5 ([ oty e vmay) (50)
Numerical integration of Eq. (80) gives
| oxy)olxz)otx widix.y.zow) ~ a'® (140,027 ). (81)
04 a
and using Supplementary Table S1 in Eq. (79), we compute that
E{S;} ~0. (82)
Similarly, we expand E {Sff} as
E {Sff} =y (/94 o(x,y)0(y,2)d(z, w)d(x,y,2z, W) — 3 (2@]2 + Ig) + 2a463> (83)

and we are left with the numerical integration of Iy = [, ¢(x,y)d(y,2)¢(z, w)d(x,y,z,w). For y such that
ly — 09| > 3r, points x and z such that |x —y| < r and |z — y| < r are at a minimal distance of 2r from the
domain boundary 92 and there is no boundary correction in I5. We thus decompose I5 as

o 3 " 3r
Is = (a— 3ur) (7r?)" + g/o /Ah (k(x,h) + k(h,x)) dx

/ (k(z,h) + k(h, 2)) / (k(z, W) + k(w, z)) dwdzdh (84)
Ap

Az

where A, = b(z,7) N 2. We then used a finite difference algorithm with respect to the variable h ( n, = 37

steps of size dh = 0.001) coupled with a Monte-Carlo sampling of x and z in each Ap,—jqn for 1 < j < ny
(nx = ngz = 1000 random draws x;,2,, 1 < i,p < n) as well as a sampling of w in each A, related to each
random draw z, (nw = 1000 random draws wy, 1 < k < ny) and approximate

3r
/ / (k(x,h)—i—k(h,x))dx/ (k(z, h)+k(h,z))/ (k(z, w) + k(w, 2)) dwdzdh
0 Ap Ap

Az

Q

np Ahj Nix
ZT (k(hj,xi) + k(xi, hy))
j=1 "* 4

Ap, & A,
> {(k(hjv 2p) + (2, ) 2> ((zp, wi) + k(Wi Z,,)>} dh, (85)
Z p=1 W k=1
leading to
~ o433 ur
Is ~ a'p (1 +0.0153% ) . (86)

Finally, reinjecting Monte-Carlo approximation of I5 in Eq. (83), we obtain
E {53} ~ @4530.002%, (87)
leading to

E{S1} ~ 24E {S}} = 246460002~ (88)
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3.3 Conclusion

Finally, because fQQ do(x,y)d(x,y) = 0, we have

B85} = 1205 | ol y)onlxr)dlx.yon) | oot wid(aw) =0, (59)
and

B (S} = a0 | on(xy)dixy) [ ooawida.w) [ oot wdlew) =0, (90)

02

Consequently, using expressions of E {S2} (Eq. (58)), E{S3} (Eq. (74)) and E {S4} (Eq. (88)) in Eq. (50) we
obtain

a? =
E{(K(rn) —E{K ()}’ } = ——3 > E{S;}
(n(n - 1)) j=2

= L ur 2 _ % B % ur
T [B (1+076"7) + 8 (( 3+1.173d2> +( 0915 + a20'414) a)
+ 63( 2+00120‘4“’“)], o

Q2 a

which simplifies for n > 1 to
E{(K(r,n) - E{K(r,m)})"}

- Ai (5 (1+0.76%0) + 62 (1173 + 0.414°5 ) + 5° (—2+ 0.012#2”)) . (92)

4 computation of E {(K(r, n) —E{K(r, n)})4}

We have

E{(K(T7n)—E{K(T7”)})4}=m {(Z%X)’) }7 (93)

XF#y

4
and following the method of section 3, we expand E { (iny oo(x, y)) } as

E{ (Z ¢o<x,y)) } - ﬁjE{SJ} (99)

where S~’j is the sum of the terms containing j different points:

52 = a2 Z ¢3(X7 y)> (95)

X#y

Ss = af > Hxy)ee(xz)+al Y G3(xy)d(x 2)
XAY#Z XAY#Z

+ a] Y B(xy)eo(x,2)do(z,y), (96)
XFY#2
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S o= ay Y, dxy)do(mw)+ag Y ¢g(xy)d(zw)

Xy Fnitw Xy Faiw
+ 2 Z ¢%(X’ Y)¢0(X’Z>¢0(X?W) + di Z ¢(2)(X’Y)¢O(X7Z)¢0(Yaw)
XAy Fotw XAy Fatw
+oay Y Yz w) +a§ Y do(x,¥)b0(y,2)do(z, W)do(x, W)
XAy FoFtw XAy Fotw
+oa Y do(xy)do(x,2)do(x, W) (y. 2), (97)
XEYFLFW

Sy = a Z 95 (%, ¥)Po(z, W)do(x, 1) + a3 Z $5(x,¥)d0(2, W)go (2, )

x#yFaAwEr xFy£aAWET
+oad D do(x,¥)b0(x, 2)do(x, W)do(x,T)
XAY FZFEWFET
+ dg Z ¢0(X’Y)¢O(X7Z)¢0(X7W)¢O(Y7r)
xtyFEzEwEr
+oa Y, do(xy)e0(x,2)¢0(y,z)do(W,T)
XAYFZEWHET
+oal Y do(x,y)0(x,2)¢0(y, W)do(z, 1), (98)
XAYFZEWHET

SG == afli Z ¢(%(XaY)¢0(Z7W)¢O(r7u)

xAyF2EwETEU
+ ag > Do (x,y)¢o(x, 2)do(x, W)po(r, u)
£y FaFWATEY
+ ag > Po(%,5)¢0(y, 2)do(2, W)go(r, u)
£y FaFwATEY
+ a% Z ¢0(X7Y)¢O(sz)¢0(w7r)¢0(wvu)7 (99)
XAy FZFAWHETFU
57 = a7 Z ¢0(Xa y)(bo(X,Z)QZSo(W,I')d)(](u, S) (100)
Xty FatwirEudts
and
5’8 = dS Z ¢O(X7Y)¢O(Z7W)¢O(rvu)¢0(s7r)' (]-0]-)
XAYFZAWHErAuFES#r

4.1 computation of coefficients as, a3, . .. as
Computing the number of terms in each sum of Eq. (94), we get that

6

4
(n(n —1))* = Gada + Z%ag + Za4a4 Z Las + ) dhde + drr + asds, (102)
j=1

where &; = n(n —1)...(n — i+ 1) is the number of ways to choose an ordered subset of ¢ different points
among n. Expanding Eq. (102) and identifying polynomial coefficients, we obtain that

3 7 6 4
iy =8, d} Z(Q =652,) al =576,) a} =188,d7 = 24 and ag = 1. (103)
j=1 j=1 j=1 j=1



Using similar counting arguments as in sub-section 3.1, we further obtain that
3 .
ay = 64,a3 = 48 and a3 = 96 which verify » @} = 208,
j=1
ay = 16,a3 = 12,a3 = aj = 96,a5 = 192, a% = 48 and a; = 192,
7
which verify ) @} = 652,

Jj=1

a; = 96,a% = 48,a3 = 16,a; = 192,a2 = 32 and a: = 192,
6
which verify Z al = 576,

Jj=1

and

4
ag = 12,a¢ = 32,dg = 96 and G = 48 which verify  _al = 188.
j=1
4.2 computation of E {S*]} for 2 <5 <8
4.2.1 computation of E {Sg}
Assuming a uniform distribution of the points inside {2 we have

E {32} = 8 o ¢3(X7y)da2(an)7

where ay = n(n — 1)a=2uy (see Eq. (3)), that we expand as

B{S:} = s [ (0%0xy) =496 (cy) + 6520 (xy) — 45°0(x.) + 5) dlx.y)

= 8w (/ ¢t (x,y)d(x,y) — 4813 + 6521, — 45° Iy + a254> .
02
We are thus left with the computation of [, #*(x,y)d(x,y) that we numerically evaluate to

0 ¢'(x,y)d(x,y) ~ a*3 (1 + 1.44%) ,

Finally, using Supplementary Table S1 in Eq. (109), we obtain
E {SQ} ~ 8aiy (B (1 n 1.44%) —4p? (1 n 0.76%) 168 (1 n 0.305%))
4.2.2 computation of E {5'3}
Because a} = 64, a3 = 48 and a3 = 96, we can re-write E {53} as
E {33} = 64E {S;} + 48E {sg} + 96E {sg} ,
with

E{5}} = s /Q 3, ¥)o(x, 2)d(x, ¥, 2),

12

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)



B {82} = o [ dilxyeiixadicy.a),
and

£{5} = o / G305 ¥)0 (%, 2)d0 (2, ¥)d(x, ¥, ).

13

(114)

(115)

Accounting for 2 boundaries at leading order and using Monte-Carlo numerical approximations (see sections

2 and 3), we find that

E{S}{} ~ 0,

E{ §} ~ dg (52 (1 n 0.7%) _ o3 (1 n 0.3%)) .

and

E{8}} ~as <32 (1 - 3\/3) + 0470 — (217+ 0.7212")> :

47

leading to

E {53} = &g (,62 (104.3 n 78.7%) _ (304.3 n 97.9%)) .

4.2.3 computation of E {5'4}

We decompose the computation of Sy as follows

where coefficients &i are given by Eq. (105) and,

E{S1} =i | ob6cy)on(m widexy. s w)

B {8t} =i | obxy)edla widix.y.zw)
B {51} = ou | 3xy)ontx 2)on(x,w)d(x.y. 2 w)
B{St} =i | oblx.v)onlx.z)only. whdix.y.zw)
B {81} = s | dBxy)ontxz)on(a wiix, .z, w),

B {1} = s | duty)only. )60 w)onlox w2, ).
and

E{$]} = a, /Q 00(x, )0 (x, 2) (%, W)do(y, 2)d(x, ¥, 7, w).

(116)

(117)

(118)

(119)

(120)

(121)

(122)

(123)

(124)

(125)

(126)

(127)
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First [, ¢o(x,y)d(x,y) = 0 leading to IE{ :}} = 0. Then, we have E { Nf} =ay (L — a262)2 leading to
(see Supplementary Table S1),
2

E {sz} ~ (5 (1 + 0.305%) - 52) (128)

Expansion and numerical integration near the boundary of E {5;1”}, E {5‘2} and E { E’} gives E {S’j} ~

E {5‘3} ~E {S;Z’} ~ 0. Conversely, expansion of E {S’ff} yields

{38} ~ ([ obxyoly.a)slmwiolx widixy.aw)
Q4
—  4BI5 + 4B%aly — a* B} (129)

and we are left with the computation of

o= [ 60xy)oly. )60 wyolx. w)d(x.y. 2 w) (130)
First, for x such that |[x — 99| > 3r, there is no boundary correction and we decompose Ig = Ii" + Ig°rder
where
Ig" = /Q L{ix—001>3r} Lix—yl<r} Ljx—wi<r} {1{ly—zl<r}L{jw—zl<r}dz} d(X, ¥, W)
= (a—3ur) /Q ey l<ry Lipewi<r) {Hly—zi<r) Hiw-ai<rydz} dwdy, (131)
and
U 3r
g = e [ ) k) (e w) + k. )
16 Jo  Ja, Ja,
{1{\yfz\<r}1{\w7z\<r} (k(ya Z) + k(Z, y)) (k(W, Z) + k(zv W)) dZ} dwdydh. (132)
We then rewrite Ii" as
I = (a — 3ur) (7r7'2)2 Pr{ly —z| <r and |w — z| < r given that (y,w) € b(x,7)}. (133)

Denoting d(y,w) = |y — w|, and z being uniformly distributed in €2, we have

Pr{ly —z| <r and |w — z| < r given that (y,w) € b(x,7)}

1 1
= CoE /b(xm)2 |b(y,r) Nb(w,r)|dydw = (o) /b(x’r)2 A(d(y,w),r)dydw (134)
where A(d(y,w),r) is given by Eq. (69)
Aldly, w).r) = 20cos™* ((d(gﬁ) )ty (135)

y and w are uniformly distributed in b(x,7) and we can thus consider local polar coordinates: y(0 < ry <
r,0 <6y <27) and w(0 < ry <7,0 <0y < 27) around x(0,0) leading to

dly,w) =d(ry,rw,0 =0y —0y) = \/1"32, + 12, — 2ryry.cos(0), (136)

and re-write Ig" as

r r 27
Ié” = (a— 3ur)277/ / / A(d(ry,rw,0),t) ryrwd(ry, rw, ©). (137)
ry=0 Jryw=0JO0=0
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Finally, a numerical integration of I{" with a finite differences scheme in ry, ry and © gives
Ii" = (a — 3ur)0.46(apB)?. (138)
Furthermore, we approximate mumerically 1¢°74" as
Jhorder 3u7‘(aﬁ)30.53%, (139)
leading to
in border 493 ur
Ig = Iin 4 IPorder o~ g3 (0.46 + 0.21;) . (140)
and using Supplementary Table S1 in Eq. (129) we obtain
&6 ~ 3 ur 4
E {54} ~ (5 <0.46 + 0.213) —B ) . (141)

Finally, numerical integration of E{ Z} gives E {sg} ~ 0, and reinjecting Eq. (141) and Eq. (128) in Eq.
(120), we obtain

E {5'4} ~ by (12 (ﬁ (1 n 0.305%) - 52)2 +488° (0.46 n 0.21%) - 48/34) : (142)
that is

E{S:} ~a (32 (12 +7.32 + 1116 (15)2) + 57 (-1.92+2.69 ) - 3664) (143)

4.2.4 computation of E {35}

We decompose the computation of £ {55} as follows

6
E{Sst =Y alEJS! (144)
(5)-$2()
where coefficients @l are given by Eq. (106) and,
B{3} = as [ dixv)on(m wintx (v, wer), (145)
E{Sg} = 065/ (b%(x,y)¢0<Z,W)¢Q(Z,I‘)d(X,y,Z,W,I'), (146)
05
B {52} = as [ on(x.y)d0(x 20l w)do(x. 1)d(x. ¥, 2, w,) (147)
05

E {gg} = Q5 /QS ¢O(X7 y)¢0(xv Z)¢0(Xa w)¢0(ya I‘)d(X, y,z,w, I‘), (148)
E{83} =as | 6u(x )00 2)60(y. 2)0(w, )d(x, v, 2w, x), (149)

and

E {S’g’} = as /QS bo(X,¥)b0(x,2)p0(y, W)po(z,r)d(x,y,2,W,r). (150)
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First [, ¢o(x,y)d(x,y) = 0 leads to E {5’%} = E{ ~§} = 0. Then, we have

E{32} = a5 (I - a*8?) (I - * %) (151)
that is, using Supplementary Table S1
g2 ~ 3 ﬂ K
E {55} ~ a5 (1 +0.305° ) 0.0066°- (152)

Finally, expansion and numerical integration near the boundary of E {S‘g }, E { é} and E { ~§} gives E {Sg} ~
E {5‘?} ~E {5’2} ~ 0. leading to

E {5*5} ~ G2E {52} ~ 48 33 (1 i 0.305%) 0.0066%, (153)
that is
E {55} ~ a5 <0.317l;7" +0.0966 (f)2> . (154)

4.2.5 computation of E {5‘6}

We decompose the computation of E {5’6} as follows

E {5} :iagﬂa{ég} (155)

j=1
where coefficients dé are given by Eq. (107) and,
E{Sé} = aG/ ¢(2)(X, y)¢0(z,w)¢o(r,u)d(x,y,z,wm,u), (156)
Q6
B {52} = s | ol y)onlox.2)on x, w)on (r, (. y. 2w, ), (157)
B {81} = oo [ 0(x.3)00(y. 2)on(a. w)oor,w)dx.y. 2w ), (158)
and
B {51} = oo | outy)oal.a)c0 (v, 1)on(ow. w2 w.1.1), (159)

Because [, ¢o(x,y)d(x,y) =0, E {S%} =E {5}?} =E {Sg} =0, and we are thus left with the computation
of E {Sé} that reads

E{Sg}

o /QG G0 (x,y)¢0(x,2)po(W,r)do (W, n)d(x,y,2z, W,r,u)

302\2 _ ~ o4 ury 2
og (I — a®82)° ~ g3 (0.0066;> . (160)

and we have that

E {Sb} = GiE {5‘3} ~ d6340.0021 (%)2 . (161)
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4.2.6 Conclusion
Because [, ¢o(x,y)d(x,y) =0, S; = Sg =0, and
6

]E{(K(r,n)fE{K(r,n)})‘L}:( p— Z { } (162)

Reinfecting expressions of E {S } for 2 < j <6 (Eq. (111), (119), (143), (154) and (161)), we have

4

]E{(K(r,n) —E{K(r,n)})4} - m (ﬂ <8+ 11.52ﬂ> (163)
+ B ((—32 + 104.32—2 + 122“2*) + < 94.32 4+ 78. 7— +T. 32@2> %

~ 2
+ 111624 (ﬂ) )
(6% a
+ B <(48 30433 1. 92) n (14 784~ 97.0% 4o, 69— +o0. 317) ur
[6%)

(0%) (6%} (6%} a
I~ 2
T O~[50.0966(W>>
Q9 a

I~ ~ 2
+ B (—36‘3‘4 +0.002128 (W) ))
(65 (65 a

which simplifies for n > 1 to

E{(K(r,n) CE{K(r, n)})4} ;4 (ﬁ (8+ 11. 527) (164)

§ 2
+ s ((104.3 + 12n) + (78.7 + 7.32n) ur +1.116n (E) )
n a 0

3 2
+ % ((—304.3 — 1.92n) + (—97.9 + 2.69n +0.317n%) “ + n%0.0966 (=) >

2
+ B (—36 +0.0021n2 (%) )) .
5 Computation of v <KM<7“)> and x (KM(T>>
We defined in the main manuscript the mean statistic
Ky(r) = K (r,n;) (165)
where K7 (r,n;) is the modified Ripley’s K function that is evaluated on the jth field of view. Thus,

E{(;I L (Ki(rng) 7”"2))3}.

’V(RM(T)) = (var{ﬁij\il f(j(r,nj)})%

(166)

For i # j, K7 is independent of K and for all 1 < j < M, var {Rj(r, n])} = 1, thus,

M
% Zf(j(r,nj) =12 Zvar{ (r,n;) } = %, (167)
i=1



and we rewrite

5 (KM(T)) = A/;E{ (i (f{j(r, nj) — 777«2)) }

Then, we decompose

M 3 " .
(Z <Rj(r’ n) = W2)) = (f(j(ﬁ n;) — 7rr2)

j=1

+ 32 ( (r,n ) 7Tr2)2 (f(i(r, n;) — 7r7"2)

+ 6 Z (KJ r,n;) — 7r7“2> (IN(’:(T, n;) —777"2) (f(k(r,nj) —7r7“2),

JFiFEk

and because E {f(j(r, n;) — 7r7"2} =0, we have

{(Z (70 ))} =S e { (&) - )},

that is

which leads to

Similarly, we have

and we decompose

+ 4Z(K](T,nj)—7rr2)3 (K (rynj) —mr )
J#i
+ 32<K3(7" nj)fm“z)Q (K (r,n;) —mr )2
J#i
+ 6 Z K (r nj)—ﬂr2)2 (I~(7(7“ n;) —mr ) (Kk(r n;) —mr )
itk
+ 242 K’ (r,nj) —mr )(IN(Z(T nj) —7TT2) (Kk(r n;) —7rr2> (Kl(r n;

18

(168)

(169)

(170)

(171)

(172)

(173)
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which leads to

{(i(K ))} S a{ (0o
+ 321@{ Ki(r,n;) — } {(Ki(r,ni)—ﬂ'rQ)Q}, (175)

that is

j=1

{(i(K]rnJ ))} AZ (Kjrnj)—i—?)M(M—l). (176)

Reinjecting Eq. 176 in Eq. 173, we obtain

w (Ku ) JZM: (&7(r,ny)) +3MA; L (177)
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Table S1: Numerical approximations of major integrals

Denotation Formula Numerical approximation
Iy Joe 2(x, ¥)d(x,y) a’p

I Joz 0(x,y)%d(x,y) a®B (1+0.305)

Iy Jos ¢(x,y)o(x, 2)d(x, y, 7) a®B% (1 + 0.0066 )

I3 Joz 0 (%, ¥)d(x, y) a?B (1+0.76)

Iy Jos 0(x,¥)6(x,2)p(y, 2)d(x. ¥, 2) 0?5 (1- %2 + 02072
I Jo1 6, y)0(y, 2)6(z, w)d(x, y, 2, W) a’3% (1 + 1.0051)

I Jos 6%, ¥)0(y, 2)¢(2, W)b(x, w)d(x, y, 2, W) "3 (0.46 + 0.2147 )
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