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1. State of the art in epitope prediction and characterization 

The first attempts to predict continuous B-cell epitopes were based on propensity scales. 
These scales assign each of the 20 standard amino acids a value associated with some 
physico-chemical property. In the most simple epitope prediction approach, an average 
propensity score within a sliding window was computed for each amino acid in a protein, 
and those amino acids whose scores exceeded a given threshold were considered parts of 
an epitope. Numerous propensity scales were used: flexibility [1], solvent accessibility 
[2], hydrophobicity [3], antigenicity, which is simply the occurrence in known epitopes 
[4], the occurrence in turns of proteins [5] and others. However, a survey of 484 
propensity scales by Blythe & Flower [6] showed that even the best of them are only 
marginally better at epitope prediction than random. Epitope prediction with a 
combination of amino-acid propensity scales proved more successful than with single 
scales. Pellequer & Westhof [7] developed a program called PREDITOP, which used 22 
propensity scales for epitope prediction. Alix [8] used several propensity scales related to 
protein secondary structure, hydrophobicity, solvent accessibility and flexibility in his 
program PEOPLE. Odorico & Pellequer [9] used even more propensity scores, over 30, 
in their program BEBITOPE. Finally, Saha & Raghava [10] developed a web server for 
epitope prediction called BcePred, which combined seven propensity scales. 

The attempts to predict epitopes also resulted in the characterization of the properties of 
the epitopes. One such property is the flexibility of the side chain of the constituent 
amino acids [11], which makes them easier to adjust to the antibody [12]. Another is the 
tendency to appear on the surface of antigens [13], where they are accessible to 
antibodies. Surface amino acids are often hydrophilic, while the ones in the interior of 
proteins are more often hydrophobic, so epitopes are characterized by low hydrophobicity 
[14]. The amino acids that often occur in turns of proteins are common in epitopes 
because such amino acids are both flexible and accessible [15]. It was observed that 
epitopes are enriched in tyrosine and tryptophan, and to have preference for polar amino 
acids [11]. 

2 Attributes for machine learning 

There are eight attribute vectors that have been used to represent a peptide. 

Frequency: This attribute vector consists of the frequencies of the amino acids in the 
peptide. 22 amino acids are present in the data set: the 20 standard ones, Z (which stands 
for citrulline) and X (which stands for an unknown amino acid). The peptide is split into 
p parts of equal length (or as close to equal as possible), and the frequencies are 
computed for each part separately. The attribute vector thus has the form: 

[A1, C1, ..., Z1; ...; Ap, Cp, ..., Zp]. 



Ai is the frequency of the amino acid A in the i-th part of the peptide. The best value of p 
as determined in the fourth step of parameter tuning was p = 3. 

Frequency difference: This attribute vector consists of the differences between the 
frequencies of the amino acids in the peptide. While the information about such 
differences is already contained in the frequency attribute vector, there may be an 
advantage of providing it explicitly. For example, let the difference between frequencies 
A – C > 0.3 indicate that the peptide contains an epitope. A machine learning algorithm 
may miss this pattern if it is based on different individual frequencies A and C (such as A 
= 0.8, C = 0.3; A = 0.6, C=0.2; etc.), because each of them occurs rarely and consequently 
does not seem important. The peptide is again split into p equal parts, and the differences 
are computed for each part separately. Frequency differences turned out to perform better 
in combinations with frequencies themselves, so plain frequencies were added to the 
attribute vector. Its form is thus: 

[A–C1, ..., A–Z1, ..., Z–Z1; ...; A–Cp, ..., A–Zp, ..., X–Zp; A, ..., Z]. 

A–Ci is the difference between the frequencies of the amino acids A and C in the i-th part 
of the peptide, and A is the frequency of the amino acid A over the whole peptide. The 
best value of p was p = 2. 

Subsequence frequency: This attribute vector consists of the frequencies of the 
subsequences of the peptide of lengths up to l. Since few longer subsequences occur 
often, which makes it difficult for a machine learning algorithm to recognize them as 
important, the definition of a subsequence is relaxed by allowing gaps of total length up 
to g. A subsequence with gaps does not count as a whole subsequence, but only as wg of a 
subsequence, where w ≤ 1. To keep the number of attributes under control, only the first c 
most common subsequences of each length in the training data are included. The attribute 
vector thus has the form: 

[S11, S12, ..., S1c; S21, S22, ..., S2c; ...; Sl1, Sl2, ..., Slc]. 

Sij is the frequency of the j-th most common subsequence of length i in the peptide. The 
best values of the parameters were l = 5, g = 0 and c = 25. 

This attribute vector plays a role similar to the subsequence kernel used by EL-
Manzalawy et al. [16], [17]. It performed better then the subsequence kernel on the 
training set, though – possibly because the subsequence kernel takes into account too 
many subsequences, including misleading ones. It should be noted that because this 
attribute vector consists of the most common subsequences, its exact composition 
depends not only on its parameter values, but on the training set as well. 

Amino-acid property: This attribute vector consists of the average values of 19 amino-
acid side-chain properties. The peptide is split into p equal parts and the properties are 
averaged over each part separately. The following properties are included: 



• Acidity: the acidity equals pKa – 14 for acids, pKa + 2 for bases and 0 for neutral. 
The values of pKa [18] range from –2 to 14, are small for strong acids and weak 
bases, and large for weak acids and strong bases (the range is valid for acids and 
bases in general, not specifically for amino acids). The scale was thus chosen so 
that the values for acids are between –16 (strongest) and 0 (weakest), and the 
values for bases between 0 (weakest) and 16 (strongest). 

• Accessibility: the accessibility to solvent, averaged over the values given by Janin 
et al. [19] and Bordo & Argos [20]. 

• Antigenicity: the frequency in known epitopes, divided by the frequency in non-
epitopes [4]. 

• Aromaticity: 1 for aromatic amino acids and 0 for the rest [18]. 
• Composition: atomic weight ratio of hetero (non-carbon) elements in end groups 

or rings to carbons in the side chain [21]. 
• Flexibility: flexibility as measured by atomic displacement in X-ray 

crystallography [22]. 
• Hydrogen bonding: 1 for the amino acids that form hydrogen bonds and 0 for the 

rest [23]. 
• Hydrophobicity: hydrophobicity as measured by high-performance liquid 

chromatography [3]. 
• Occurrence in turns of proteins [5]. 
• Polarity: polarity given by Grantham [21]. 
• Preference for α-helices, β-sheets and reverse turns [24]. 
• Size: van der Waals volume [18]. 
• Summary factors 1–5: five factors best summarizing 494 amino-acid properties, 

obtained by multivariate statistical analysis [25]. 

Plain amino-acid frequencies were added to the attribute vector, resulting in: 

[acidity1, accessibility1, ..., factor51; ...; acidityp, accessibilityp, ..., factor5p; A, ..., Z]. 

The value acidityi is the average acidity in the i-th part of the peptide etc., and A is the 
frequency of the amino acid A over the whole peptide. All 19 properties turned out to be 
valuable, as removing any of them resulted in worse classification. The best value of p 
was p = 2. 

Class frequency: This attribute vector consists of the frequencies of classes of amino 
acids in the peptide. For example, such a frequency is the frequency of acidic amino 
acids. The classes of amino acids are based on the 19 properties described under the 
amino-acid-property attribute vector are included. This results in 17 ways to classify 
amino acids, as the preferences for α-helices, β-sheets and reverse turns are merged. The 
peptide is split into p equal parts and the class frequencies computed for each part 
separately. The following ways to classify amino acids are included: 

• Acidity: acidic (ED), basic (HKR), neutral (ACFGILMNOPQSTVWYXZ) 
• Accessibility: low (CIFVLGAMW), medium (XZHSTY), high (PDNQERK) 



• Antigenicity: low (NMEDRGW), medium (TKSQXZAPF), high (HIYLVC) 
• Aromaticity: yes (FHWY), no (ACDEGKMNPQRSTILVXZ) 
• Composition: zero (AFILMV), low (WYKPHXZRTGQE), high (NDSC) 
• Flexibility: low (WYFCIVH), medium (LMAGTXZ), high (RSNQDPEK) 
• Hydrogen bonding: yes (DEHKNQRSTWYXZ), no (ACFGILMPV) 
• Hydrophobicity: low (DENSQGKTR), medium (AHPCXZ), high (YVMILFW). 
• Occurrence in turns: low (IMLV), medium (TYFAQKCXZRWE), high 

(HPNGDS) 
• Polarity: non-polar (LIFWCMVYPAGXZ), polar neutral (TSHQN), polar positive 

(RK), polar negative (ED) 
• Preference for secondary structures: α-helices (ACLMEQHK), β-sheets 

(VIFYWT), reverse turns (GSDNP), indifferent (RXZ) 
• Size: tiny (GAS), small (CPDTNV), large (EXZQHILMFKYRW) 
• Summary factor 1: low (CVILF), medium (MWAGSTXZPYH), high (QNDERK) 
• Summary factor 2: low (MEAL), medium (FKIHVQRXZWDTC), high (NYSGP) 
• Summary factor 3: low (SDQHPLCAV), high (XZKWNGERFITMY) 
• Summary factor 4: low (WHCMY), medium (QFKDNXZEIPR), high (STGVLA) 
• Summary factor 5: low (DSQPVLE), medium (CWAHXZF), high (INMTYKGR) 

Plain amino-acid frequencies are added to the attribute vector, resulting in: 

[freq(acidity)1, ..., freq(factor5)1; ...; freq(acidity)p, ..., freq(factor5)p; A, ..., Z], where 
freq(acidity)i = [acidici, basici, neutrali] 
... 
freq(factor5)i = [factor5-lowi, factor5-mediumi, factor5-highi]. 

The value acidici is the frequency of acidic in the i-th part of the peptide etc., and A is the 
frequency of the amino acid A over the whole peptide. The best value of p was p = 3. 

Class subsequence frequency: This attribute vector is similar to the subsequence-
frequency vector. The difference is that instead of individual amino acids, the 
subsequences consist of the 17 classes of amino acids described under the class-
frequency attribute vector. For example, the subsequence of amino acids “EADC” is 
replaced with “anan”, where “a” stands for acidic and “n” for neutral. This addresses the 
already mentioned problem of few subsequences occurring often and thus being 
recognized as important. The problem is addressed by replacing 22 individual amino 
acids with three classes, resulting in fewer different subsequences and thus greater 
recurrence of them. A subsequence can again have up to g gaps and has a weight of wg. 
Only the first c most common subsequences of each length in the training data are 
included. Plain amino-acid frequencies were added to the attribute vector, resulting in: 

[subseq(acidity), ..., subseq(factor5); S11, ..., S1c; ...; Sl1, Sl2, ..., Slc], where 
subseq(acidity) = [acidity11, ..., acidity1c; ...; acidityl1, ..., aciditylc] 
... 
subseq(factor5) = [factor511, ..., factor51c; ...; factor5l1, ..., factor5lc]. 



The value acidityij is the frequency of the j-th most common class subsequence of length i 
in the peptide when amino acids are classified by acidity (into acidic, basic, neutral). Sij is 
the frequency of the j-th most common amino-acid subsequence of length i. The best 
values of the parameters were l = 2, g = 5, w = 0.5 and c = 25. 

Pair: This attribute vector consists of the frequencies of pairs of amino acids with a 
certain distance between them. For example, such a frequency is the frequency of the pair 
(A, C) with distance 3. The rationale is that epitopes might bind antibodies at more than 
one anchor position due to the shape of the paratope, the antigen-binding site on the 
antibody. The number of such attributes is very large, so two measures can be taken to 
reduce it. First, s distances can be merged into one. If s = 3, an example attribute is the 
frequency of the pair (A, C) with the distance 4, 5 or 6 between the members of the pair. 
Second, one or both of the amino acids in each pair can be replaced with a class of amino 
acids. If one of the amino acids is replaced with acidity class and s = 3, an example 
attribute is the frequency of the pair (A, acidic) with the distance 4, 5 or 6 between the 
members. The attribute vector thus has the form: 

[pair(A1, A2), ..., pair(A1, An2); ...; pair(An1, A1), ..., pair(An1, An2)], where 
pair(Ai, Aj) = [(Ai, Aj) with d1, ..., (Ai, Aj) with dmax]. 

Ai is the i-th amino acid or class of amino acids, n1 and n2 are the numbers of different 
amino acids or classes for the first and second member of the pair, dk is the k-th distance 
or a group of distances between the two amino acids (or classes) in the pair, and dmax is 
the maximum distance. The best classification was achieved with the first member of the 
pair being amino acid and the second aromaticity class. The best value of s was s = 5. 

Fixed pair: This attribute vector consists of the frequencies of amino acids at a certain 
distance from the first position in the peptide, and the amino acid at the first position. For 
example, such a frequency is the frequency of the amino acid A at distance 3 from the 
first position. This attribute vector is similar to the pair vector, except that one member of 
the pair is fixed to the first position. The rationale is that when a peptide is placed on an 
array, the first (uppermost) position is the most exposed and the most likely to bind an 
antibody. However, EAR detection should not rely on unwanted binding particularities at 
the other  end of fixed linear peptides. By ignoring the latter peculiarity, physically the 
eighth position within a 15mer peptide constitutes the central position for antibody 
recognition. Thus, if the antibody binding site does use the eight position as anchor 
position at its center. antibodies have enough antigenic space to bind the epitope coming 
from both ends. Again s distances can be merged and the amino acid can be replaced with 
a class of amino acids. The attribute vector thus has the form: 

[A1 at d1, ..., A1 at dmax; ...; An at d1,..., An at dmax; first]. 

Ai is the i-th amino acid or class of amino acids, n is the number of different amino acids 
or classes, dj is the i-th distance or a group of distances from the first position, dmax is the 
maximum distance, and first is the first amino acid in the peptide. The best classification 
was achieved with amino acids (not classes) and s = 5. 



3 Parameter tuning 

Searching the whole space of the available options for the ML-advanced machine 
learning approach was infeasible, so we used a six-step tuning procedure. All tuning was 
done on the training set.  

• In the first step we compared 41 machine learning algorithms from the Weka 
machine learning suite [26] on attribute vectors consisting of the frequencies of 
amino acids in the peptide. Default parameter values were used for the algorithms. 
The comparison resulted in a short list of eight algorithms with SVM [27] in the 
lead.  

• In the second step we determined the provisional best attribute parameter values 
for each of the eight attribute vectors, using SVM.  

• In the third step we compared the eight machine learning algorithms from the first 
step on each of the eight attribute vectors with the provisional best attribute 
parameter values as determined in the second step. Three of the algorithms 
performed best on at least one of the attribute vectors: SVM, logistic regression 
[28] and classification via regression [29].  

• In the fourth step we compared the whole range of reasonable attribute parameter 
values using these three algorithms. Each algorithm was tested by itself, all three 
were combined by stacking and finally just the better two (SVM and logistic 
regression) were combined by stacking. The result of this step was the best 
attribute parameter values and the best machine learning algorithm for each of the 
eight attribute vectors.  

• In the fifth step we tuned the parameter values of the machine learning algorithms 
selected in the previous step. The parameters were tuned separately for each of the 
eight attribute vectors. 

• In the sixth step, we selected the best machine algorithm for the meta-classifier 
and tuned its parameters. 41 algorithms from the Weka machine learning suite 
were compared again. 

The number of all possible parameter value combinations was in many cases still too 
large to search exhaustively, so we used an informal greedy search. We optimized the 
parameters one by one in what we deemed to be decreasing order of importance. For the 
parameters with few possible discrete values, all the values were tried. For the parameters 
with many discrete or continuous values, a few evenly spaced values were tried first. 
After that, additional more densely spaced values were tried in the most promising 
interval. The data set used during the first five steps was balanced using random 
undersampling (see the Data subsection). This was also the case for most of the sixth 
step. The best five candidate machine learning algorithms for the meta-classifier, 
however, were compared on the training set balanced with random oversampling, as well 
as on the original (imbalanced) training set. This was done so that at least in the last step 
the conditions for comparison were identical to the conditions under which the final 
classifier for epitope prediction was trained. 

 



4 Machine learning algorithms 

We describe only the most relevant machine learning algorithms. The three that were 
found most suitable to train the base classifiers were SVM, logistic regression and 
stacking. The meta classifier was trained by Pace Regression [30], which is a version of 
linear regression whose mathematical details are beyond this paper. The algorithm for the 
induction of human-readable rules, which was used for epitope analysis, is RIPPER. All 
algorithms are implemented in the Weka machine learning suite [26]. 

SVM: Attribute vectors of length L representing the peptides can be said to occupy an L-
dimensional space. The SVM finds a hyperplane across this L-dimensional space that best 
separates the two classes. To deal with cases where the classes are not linearly separable, 
some instances of each class are permitted to be on the wrong side of the hyperplane. 
Such errors also allow for a greater margin between other instances and the hyperplane, 
which improves the generalization of the classifier, because small margins on the training 
data may result in misclassification on the slightly different test data. The trade-off 
between errors on the training data and forcing narrow margins is controlled by the 
complexity parameter C: increasing the value of C increases the cost of misclassification 
on the training data. 

Another way to deal with classes that are not linearly separable is to map the attribute 
vectors into a higher-dimensional space. Let xi and xj be a pair of L-dimensional attribute 
vectors. Let Φ(xi) and Φ(xj) be these vectors mapped into a higher-dimensional space. 
Since computing the hyperplane that separates the classes only involves computing inner 
products of the attribute vectors, the mapping can be efficiently accomplished by a kernel 
function K(xi, xj), which returns the inner product of Φ(xi) and Φ(xj) without explicitly 
performing the mapping. The linear kernel function returns the plain dot product: Klin(xi, 
xj) = xi ⋅ xj. Linear kernel is just a special case of polynomial kernel: Kpoly(xi, xj) = (xi ⋅ xj) 
p. The PUK kernel [31] is based on the Pearson VII function, defined as follows: 
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1
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The SVM does not return proper probabilities that an instance belongs to the class into 
which it is classified. Therefore, the values returned by the SVM are mapped to 
probabilities by logistic regression [32]. We used the Sequential Minimal Optimization 
(SMO) implementation of SVM [27], which is capable of performing the mapping. The 
SVM alone was used to train three of the base classifiers (see the list below). Four of the 
base classifiers used stacking, which also included SVM. The best parameter values as 
determined in the fifth step of the parameter tuning were as follows: 

• Frequency: C = 1, PUK kernel with ω = 0.5, σ = 2.5 
• Subsequence frequency: C = 1, polynomial kernel with p = 2 



• Amino-acid property: stacking, C = 2, PUK kernel with ω = 1, σ = 2 
• Class frequency: stacking, C = 1, linear kernel 
• Class subsequence frequency: stacking, C = 0.5, linear kernel 
• Pair: stacking, C = 0.1, polynomial kernel with p = 2 
• Fixed pair: C = 5, linear kernel 

Logistic regression: The logistic function f(z) maps an input variable z to a value 
between 0 and 1. The input variable is a weighted sum of the attributes in the attribute 
vector x = [x1, x2, ..., xL], and the output is the probability that the peptide represented by 
the attribute vector x is positive. The function is defined as follows: 

f(z) = (1 + e–z)–1, where  
z = β0 + β1 x1 + β2 x2 + ... + βL xL. 

To classify peptides using logistic regression [28], the parameters β0  β1, ..., βL must be 
estimated from the training data. If the number of attributes is large or if they are 
correlated, the estimates may be unstable. This can be mitigated by restricting the 
difference between successive parameters βi, βi+1. How much the parameters are 
restricted depends on the ridge parameter λ: increasing λ increases the restriction. 

Logistic regression alone was used to train one of the base classifiers. Four of the base 
classifiers used stacking, which also included logistic regression. The best parameter 
values were as follows: 

• Frequency difference: λ = 10–8 
• Amino-acid property: stacking, λ = 0.1 
• Class frequency: stacking, λ = 1 
• Class subsequence frequency: stacking, λ = 50 
• Pair: stacking, λ = 200 

Logistic regression was also used to divide peptides into classifiable and unclassifiable, 
with λ = 0.1. 

Stacking: This method [33] is similar to our overall machine learning procedure. It uses a 
number of base classifiers, which are trained by different machine learning algorithms, 
but on the same attribute vector. Each of these base classifiers returns the probability that 
the peptide represented by the attribute vector contains an epitope. These probabilities 
form a new attribute vector, whose class is 1 if the peptide contains an epitope and 0 
otherwise. A meta classifier, which uses regression, is then trained on the new attribute 
vectors to compute the final probability that the peptide contains an epitope. Stacking 
uses internal cross-validation: base classifiers are trained on a part of the data and used to 
classify the rest, which is then used to train the meta classifier. 

We used the StackingC implementation [34] of stacking with five-fold internal cross-
validation and linear regression to train the meta classifier. The base classifiers were 



trained by SVM and logistic regression. Other machine learning algorithms we tried had 
issues with randomly oversampled data (see the Data subsection): because of the 
presence of the same peptides in training and test data during the internal cross-
validation, their performance was evaluated too optimistically. As a consequence, they 
were assigned incorrect weights in the liner combination of the outputs of the base 
classifiers that constituted the meta classifier. Stacking was used in the base classifiers 
trained on four of the attribute vectors (note that the base classifiers in the overall 
machine learning procedure are meant here, not the base classifiers in stacking): amino-
acid property, class frequency, class subsequence frequency and pair. 

RIPPER: The name stands for Repeated Incremental Pruning to Produce Error 
Reduction [35], a machine learning algorithm that learns a set of rules to classify the data. 
The algorithm splits training data into a growing set to “grow” rules and a pruning set to 
“prune” them. 

Growing a rule consists of repeatedly selecting the attribute with the highest information 
gain, which means that knowing its values gives the most information about the class, 
and adding it to the antecedent of the rule. This is repeated until all the instances matched 
by the antecedent of that rule belong to the same class. 

No freshly grown rule misclassifies on the growing set, but the question is how well it 
does on previously unseen data. An example on such data is the pruning set, so each rule 
is tested on the pruning set. Each of the conditions in the rule is considered for removal. 
Those whose removal improves the performance on the pruning set are in fact removed. 

After growing and pruning each rule, the instances matched by the antecedent of that rule 
are deleted from the growing set. The procedure is repeated until the rule added last 
increases the combined description length of the rule set and the misclassified instances 
by more than a constant. The rationale for this stopping criterion is that rules that are 
complex and have many exceptions (misclassified instances) make little sense. Finally, 
the rules are optimized for compactness. 

We used JRip, Weka implementation of RIPPER, with default parameter values. 

 

5 Epitope prediction performance measures 

Classification accuracy: The accuracy is defined as the number of correctly classified 
instances divided by the total number of instances. It is an appropriate measure when the 
test set has roughly the same number of instances belonging to each class, when 
misclassifying any class to any other class is equally undesirable and when one is 
interested in crisp classification. Since we had three times more non-binding than binding 
peptides, the first condition was not truly satisfied, but we were in addition interested in 
the classification performance under the assumption that the probability for a binding 
peptide is the same as for a non-binding one. The other two conditions seem reasonable 



for epitope prediction. An advantage of the accuracy is that it is intuitively 
understandable. 

Area under receiver operational characteristics curve: The receiver operational 
characteristics (ROC) curve is a plot of the true positive rate vs. false positive rate, 
obtained by varying the threshold above which the value returned by the classifier is 
considered to indicate the positive class. Examples can be seen in Figures 2 and 8 of the 
main text. True positive rate (which equals sensitivity) is the number of correctly 
classified positive instances, divided by the number of all positive instances (the 
probability to recognize peptides that contain epitopes as such). False positive rate (which 
equals 1 – specificity) is the number of incorrectly classified negative instances, divided 
by the number of all negative instances (the probability to mistake a peptide without an 
epitope for one with an epitope). If true positive rate is larger than false positive rate (the 
ROC curve lies in the upper left part of the plot), the classification is useful, otherwise it 
is misleading. The area under the ROC curve (AUC) is an aggregate measure of the 
performance of the classifier when one considers different thresholds in order to correctly 
classify more positive instances at the expense of misclassifying negative ones and vice 
versa. It is appropriate regardless of how many instances belong to each class. Note that 
binding peptides were considered positive and non-binding negative. 

 

6 EAR rules 

The rules describing what distinguishes binding peptides from non-binding ones have the 
following form: 

IF (a1 < val1) AND (a2 ≥ val2) ... THEN class = binding (app1 / corr1) 
... 
ELSE IF (an–1 < valn–1) AND (an ≥ valn) ... THEN class = binding (appm–1 / corrm–1) 
ELSE class = non-binding (appm / corrm) 

The letters ai indicate the attributes and vali the values these attributes may take. Some of 
the attributes are the frequencies of amino acids – these are written as capital letters (for 
example Y for the frequency of tyrosine). The other attributes are amino acid properties 
(for example aromaticity) – these are described in Attributes for Machine Learning. The 
number n is the total number of attribute comparisons and m the total number of rules. 
Each rule applies to a certain percentage of peptides, which is denoted appi. The rule 
classifies corri of the peptides it applies to correctly. 

The percentages of binding peptides that were classified correctly by the rules containing 
an attribute, which are used in Tables 5 and 7 of the main text to measure the importance 
of the attribute, were derived from the values appi and corri. For a single rule, the value ai 
= appi × corri is the percentage of peptides that were classified correctly by that rule. For 
all but the last rule, these peptides are binding, so the value bi = ai × allCount / posCount 
is the percentage of binding peptides that were classified correctly by that rule. The 



values allCount and posCount are the numbers of all the peptides and the binding 
peptides in a data set. For the complete training set, these numbers are 13,638 and 3,420, 
respectively; for the classifiable peptides, they are 10,922 and 2,699; for the 
unclassifiable peptides, they are 2,716 and 721. Summing bi over all the rules i that 
contain a given attribute finally yields the percentage of binding peptides that were 
classified correctly by the rules containing that attribute. 

Rules for the whole training set (the summary is in Table 5 of the main text) 

IF (Y ≥ 2) AND (aromaticity ≥ 0.2) AND (polarity ≤ 0.441152) THEN class = binding 
(5.6 % / 79.3 %) 

ELSE IF (R ≥ 1) AND (Y ≥ 1) AND (acidity ≥ 0.470084) AND (aromaticity ≥ 0.095238) 
AND (hydrophobicity ≤ 0.580333) THEN class = binding (3.0 % / 71.3 %) 

ELSE IF (R ≥ 2) AND (aromaticity ≥ 0.095238) AND (hydrophobicity ≤ 0.563667) AND 
(preference_for_β-sheets ≤ 0.461789) THEN class = binding (1.5 % / 70.6 %) 

ELSE IF (aromaticity ≥ 0.266667) AND (factor_2 ≥ 0.36834) AND (hydrophobicity ≤ 
0.580333) THEN class = binding (3.8 % / 64.7 %) 

ELSE IF (aromaticity ≥ 0.333333) THEN class = binding (1.2 % / 57.9 %) 

ELSE IF (R ≥ 1) AND (aromaticity ≥ 0.095238) AND (polarity ≤ 0.41893) AND 
(factor_2 ≥ 0.380028) THEN class = binding (3.1 % / 56.8 %) 

ELSE IF (acidity ≥ 0.466477) AND (aromaticity ≥ 0.133333) AND (factor_5 ≥ 
0.009676) AND (polarity ≤ 0.455967) THEN class = binding (1.3 % / 56.7 %) 

ELSE class = non-binding (80.5 % / 85.3 %) 

Rules for the classifiable peptides (the summary is in Table 7 of the main text) 

IF (R ≥ 1) AND (aromaticity ≥ 0.266667) AND (polarity ≤ 0.442798) THEN class = 
binding (4.1 % / 99.3 %) 

ELSE IF (Y ≥ 2) AND (aromaticity ≥ 0.2) AND (polarity ≤ 0.455967) THEN class = 
binding (4.2 % / 94.1 %) 

ELSE IF (R ≥ 2) AND (aromaticity ≥ 0.133333) AND (factor_5 ≥ 0.008946) AND 
(polarity ≤ 0.455967) THEN class = binding (2.7 % / 93.7 %) 

ELSE IF (antigenicity ≥ 0.423899) AND (aromaticity ≥ 0.2) AND (polarity ≤ 0.413169) 
THEN class = binding (2.0 % / 92.0 %) 

ELSE IF (R ≥ 1) AND (aromaticity ≥ 0.133333) AND (polarity ≤ 0.413169) THEN class 
= binding (2.8 % / 77.5 %) 

ELSE IF (aromaticity ≥ 0.266667) THEN class = binding (3.8 % / 71.8 %) 

ELSE IF (H ≤ 0) AND (aromaticity ≥ 0.2) AND (aromaticity ≤ 0.2) AND (polarity ≤ 
0.479012) THEN class = binding (1.2 % / 75.9 %) 



ELSE IF (Y ≥ 1) AND (aromaticity ≥ 0.133333) AND (factor_5 ≥ 0.008987) AND 
(hydrophobicity ≤ 0.591333) THEN class = binding (2.0 % / 58.8 %) 

ELSE class = non-binding (77.2 % / 93.0 %) 

Rules for the unclassifiable peptides (the summary is in Table 7 of the main text) 

IF (R ≤ 1) AND (aromaticity ≤ 0.095238) AND (polarity ≥ 0.428807) THEN class = 
binding (8.4 % / 13.5 %) 

ELSE IF (A ≥ 1) AND (antigenicity ≤ 0.372746) AND (aromaticity ≤ 0.153846) AND 
(factor_5 ≤ 0.009019) THEN class = binding (3.2 % / 73.2 %) 

ELSE IF (R ≤ 0) AND (Y ≤ 0) AND (factor_5 ≤ 0.008105) AND (hydrophobicity ≥ 0.53) 
THEN class = binding (2.1 % / 82.5 %) 

ELSE IF (C ≤ 0) AND (Y ≤ 0) AND (aromaticity ≤ 0.153846) AND 
(occurrence_in_turns ≤ 0.462481) AND (preference_for_reverse_turns ≥ 0.350202) 
THEN class = binding (4.3 % / 64.7 %) 

ELSE IF (aromaticity ≤ 0) THEN class = binding (3.4 % / 52.2 %) 

ELSE class = non-binding (78.6 % / 86.4 %) 
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