Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

Novel Insulin Sensitizer Modulates Nutrient Sensing Pathways and Maintains β-Cell Phenotype in Human Islets

Figure 6

Proposed pathways involved in regenerative processes and preservation of the β-cell phenotype in human islets in vitro.

mTOR is pivotal in regulating a balance between proliferation and differentiation. Human islets (left panel), display a high level of insulin signaling pathway resistance due to chronic mTOR activation. This results in negative feedback, IRS-1/2 degradation and the inability of Akt to inhibit GSK-3 and engage the Wnt/β-catenin pathway. To enhance human β-cell proliferation, pharmacologic inhibition of GSK-3, in combination with mTOR-mediated β-catenin nuclear translocation is required. To shift this balance in favor of maintaining β-cell differentiation (right panel), GSK-3 inhibitors are removed and islets are treated with the PPARγ sparing TZD, MSDC-0160 that enhances AMPK activity, downregulates mTOR/S6K1-dependent negative feedback and restores the insulin-signaling pathway. Activation of Akt by insulin/IGF-1 results in increases in differentiation markers, insulin, pdx-1, nkx6.1 and nkx2.2, promotes β-cell survival and restores insulin content. Downregulation of mTOR also prevents β-catenin translocation to the nucleus, blocking DNA synthesis. Thus, DNA synthesis and differentiation do not occur simultaneously. MSDC-0160 may produce a unique modulation of nutrient sensors that give rise to signals that cause β-cells to leave the cell cycle and differentiate (right panel). The cycling of proliferation, followed by treatment with MSDC-0160 to allow restoration of insulin content, may maintain a balance between regenerative processes and preservation of the β-cell phenotype. Dotted line indicates reduced signaling levels.

Figure 6

doi: https://doi.org/10.1371/journal.pone.0062012.g006