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S-1 Rate-dependent yield force, amplitude-dependent flu-
idization

In a previous article [1], it was shown that the inelastic Gwlc can account for fluidization.
In the model, fluidization is concomitant with a particular shape of the stress-strain curve,
which resembles a plastic yielding event. It is interesting to note that in the F-actin/HMM
experiment, stiffening is much weaker than predicted by the theory (see figure 1 in the main
text), which may arguably be attributed to additional slip in the network. This deviation is
only a quantitative one which leads to a more diffuse, less sharp yield threshold and under
certain conditions to a less drastic fluidization. Still, none of the qualitative effects discussed
below depends on a particularly strong stiffening.
For clarity, we briefly summarize the inelastic yielding mechanism. In the stress-strain curves,
the characteristic signature is a softening (see also figures 1c and d in the main text). The
reason of this softening is a force-induced bond breaking (“yielding”) at f = fy. The yield
force fy is not a prescribed parameter of the model, but an emergent property determined
by a dynamic balance of single-polymer stiffening and bond softening. It is well-defined
in the limit of a strong initial time-scale separation between the mechanisms of softening,
stiffening, and the experimental protocol. At low to intermediate driving rates, the delay of
the viscoelastic stiffening with respect to the driving is negligible, so that we only have to
consider the relation between the time scale Tpulse set by the experimental protocol and and
the average time k−1

− for thermal bond opening. A yielding behavior is exhibited whenever
the initial bond time scale k−(t = 0)−1 is much smaller than the experimental time scale
Tpulse, k−(t = 0) · Tpulse � 1. In this case, the bond fraction initially hardly responds to the
stimulus. For large enough amplitudes, the viscoelastic stiffening therefore prevails, leading
to high forces. Increasing the driving amplitude even more, the exponential force dependence
of the transition rates (see SOM text below) will strongly reduce the current bond opening
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time scale k−(f)−1, leading to sudden yielding events. This provides an implicit operational
definition of the yield force fy by

k−(fy)−1 ≈ fy/ḟ . (1)

Here, we estimated the experimental time scale as the yield force fy divided by the average
force rate ḟ . Solving this for fy gives [1]

fy∆xb ≈W
(
const.×∆xbτ0e

E ḟ
)
, (2)

which reveals the (essentially) logarithmic rate dependence of the yield force (SI Fig. Aa),
since the Lambert-W function W(x) is well approximated by a logarithmic function at large
x. From the above discussion, it is also apparent that the yield force must be amplitude
independent (Fig. Ab). At the smallest force fulfilling condition (1), the material yields, no
matter what the stimulus amplitude is. Given this amplitude independence, we can use the
yield force fy to operationally distinguish “small” from “large” stimuli. “Large” are those
stimuli that cause the force f to reach the yield threshold fy.
Interestingly, the opposite behavior is found for the fluidization caused by the stimulus. We
quantify the degree of fluidization by the minimal value νmin of the bond fraction reached
during the pulse. It hardly depends on the force rate over a broad range of rates, but is
strongly influenced by the stimulus amplitude (Fig. Ac & d), as also observed in experiments
[3, 4]. The amplitude dependence is easily explained by noting that increasing the amplitude
at fixed rate implies increasing the pulse duration accordingly. This in turn means that the
bonds are longer subjected to the external force and thus have more time to open. Note
that this argument breaks down if the pulse duration is so long that the bond fraction can
equilibrate under the external force within the duration of the experiment. As a consequence,
the amplitude dependence saturates. The saturation value can be estimated as the stationary
bond fraction νst(f) under the yield force fy, νst(fy) = [1 + exp(−U + f/fT )]−1. For the
examples given in Fig. Ad, this value is nearly zero, due to the large yield force. Much less
intuitive is the very weak rate dependence of the bond breaking. Yet, it can be rationalized
by the following order-of-magnitude estimate. To establish relation (1), we noted that for
yielding to take place, the inverse bond off rate k−(fy)−1 at the yield force has to be on
the order of the pulse duration Tpulse ∼ k−(fy)−1. Given the amplitude independence of
fy, we can roughly estimate the change ∆ν in bond fraction as ∆ν ∼ Tpulse · k−(fyield) ∼
Tpulse/Tpulse = const. While the argument requires small ∆ν, it apparently captures the
underlying physics well beyond that limit, as demonstrated in Fig. Ac.

S-2 Recovery of the inelastic GWLC model after a tran-
sient strain pulse

In the main text, we found that the time scale of recovery of the linear stiffness following a
transient strain depends on the amplitude of the strain pulse (Fig. 3). This behavior can be
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understood from theoretical considerations, as shown below.
For slow bonds, the single-polymer relaxation time τLe (τLe ≈ 0.12s for le = 1.6µm, lp =
10µm, and solvent friction per length ζ = 0.07pN/µm2) is much smaller than the zero-force
bond recovery time τ ≡ (k+ + k−)−1. The force is then almost constant during most of
the relevant time after stimulus cessation. The bond fraction will therefore relax nearly
exponentially. A second consequence of the approximately constant force in the time period
of interest is that the stiffness G′ only changes due to the recovery in ν. G′ is a monotonically
increasing function of ν [1]. The dependence of G′ on ν can thus be approximated by a power
law over not too large ranges of ν,

∆G′ ∼ (∆ν)xeff , (3)

replacing the actual ν-dependence by the best-fitting power law over the range considered.
As the approximation is only defined locally, the actual value of xeff depends on the particular
range of ν. Given the exponential recovery of ν with time constant τ ,

∆ν ∼ e−t/τ , (4)

the stiffness also recovers nearly exponentially as

∆G′(t) ∼ (∆ν)xeff ∼ e−t/(τ/xeff) = e−t/τeff , (5)

with the effective time constant τeff ≡ τ/xeff .
Because we consider the recovery after pulsed loading, the range of ν is bounded from above
by the force-free steady-state bond fraction νst, which is independent of the pulse amplitude.
From below, ν is bounded by the amplitude-dependent value ν(t = 0) immediately after
the pulse, ν(t = 0) ≤ ν(t) ≤ νst. Because of the amplitude-dependent ν range, the effective
exponent also depends on the amplitude, as discussed above. The dependence of G′ on ν gets
steeper [1] for higher ν, implying that the effective exponent x10

eff for 10% strain amplitude
is larger than the effective exponent x30

eff for 30% strain amplitude, x10
eff > x30

eff . From this
relation, we obtain the following relation for the effective relaxation times

τ 10
eff =

τ

x10
eff

<
τ

x30
eff

= τ 30
eff . (6)

We thus expect the recovery time measured for 30% pulse amplitude to be larger than for
10% pulse amplitude, consistent with our experimental data (see main text and SOM text
above).
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ḟ /k0 fT

0

0.3

0.6

0.9
ν m

in

10 20
γ̂/∆xu

Figure A. Characteristic yielding predicted by the inelastic Gwlc model. Rate and
amplitude (in-)dependences of peak force fpeak and peak fluidization νmin reached during a
deformation pulse. The peak force reached during a large deformation pulse can be
interpreted as the yield force fy. (a) Nearly logarithmic dependence of the peak force on
the average force rate (symbols). Dashed lines are fits by equation (2) with prefactors 1.5
and 1.4 and scaling constants 1.4 and 0.4 for squares and circles, respectively. (b) Once the
yield force is reached, the peak force is nearly independent of the amplitude. Lines are
guides to the eye. (c) Weak dependence of the minimum bond fraction during the pulse on
the average force rate. (d) Minimum bond fraction during the pulse vs pulse amplitude.
Lines are guides to the eye. For a and c, rates are given in terms of
k0 = k+(f = 0) + k−(f = 0), peak force is given in terms of fT = kBT/(∆xu + ∆xb), and
amplitudes are γ̂/∆xu = 4.1 (squares) and γ̂/∆xu = 3.3 (circles). For b and d, pulse
durations are Tpulsek0 = 2 (squares) and Tpulsek0 = 0.27 (circles). Parameters are chosen to
represent a stiff (squares) and a soft (circles) material, respectively. The parameter sets
differ in the following values: E = 14.6, U = 8.6, f0 = 0.48 (stiff) and E = 12.2, U = −0.3,
f0 = 0.16 (soft); f0 represents an internal prestressing of the polymers that does not affect
the bond kinetics. Global parameters: lp = 10 and ζ⊥ = 0.07, consistent with common
literature values for F-actin [2] if length is measured in µm and time is measured in s. We
further fix Λ0 = 1.62, which is consistent with this convention if we identify Λ0 with the
entanglement length. ∆xu is self-consistently defined as the value of the standard deviation
of the equilibrium fluctuations of the contour at the entanglement time
τLe = ζ⊥L

4
e/kBT lpπ

4, ∆xu =
√

MSD(τLe ; E , f0) (∆xu = 0.053 and 0.067 for stiff and soft,
respectively). The width ∆xb of the bound state was arbitrarily set to a small value of
∆xb = 0.005. 4



R cA/(mg/ml) # 10% # 20% # 30%
∑

0 0.4 2 0 0 2
0.01 0.4 1 2 2 5
0.02 0.4 1 2 2 5
0.03 0.4 2 2 2 6
0.04 0.4 2 2 2 6
0.05 0.4 12 12 12 36
0.05 0.8 1 2 2 5
0.1 0.4 2 2 0 4
0.2 0.4 2 2 2 6∑

25 26 24 75

Table A. Number of datasets (#) used for the pulsed loading experiments for 10%, 20%,
and 30% strain amplitude for various values of the actin concentration cA and molar ratio
R = cHMM/cA.
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Figure B. Exemplary pulsed loading experiment. At zero time, the sample is loaded into
the rheometer. The subsequent increase in stiffness is a symptom of actin polymerization.
The shoulder at t = 200 min indicates ATP depletion, where HMM enters its rigor state.
Arrows mark times of shear pulse application (10 %, 20 %, 20 %, 30 %, 30 % amplitude,
from left to right). The linear storage modulus G′ is evaluated at 2 Hz. The decrease of the
modulus triggered by the pulse and the subsequent recovery is superposed by a slow linear
increase. cA = 0.4 mg/ml, cHMM/cA = 0.02.
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a b

Figure C. Recovery of the linear modulus after a transient shear pulse. Zero time marks
cessation of the strain pulse. (a) Unnormalized data (solid red line) together with a linear
fit to the slope during the last 47 min (blue dashed line). (b) Division of the unnormalized
data by the fitted linear function yields the normalized data. Conditions were cA = 0.4
mg/ml, cHMM/cA = 0.02, and γ̂ = 20%.
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Figure D. Reversible bond breaking. The polymer is decorated by transient bonds to the
background network. Bonds open and close with force-dependent rates k− and k+,
respectively, giving rise to an average distance Λ between closed bonds. Applying a force f
disturbs the equilibrium between binding and unbinding, and thus changes the value of Λ.
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Figure E. Reduced nonlinear modulus K̂ (ratio of stress amplitude and strain amplitude
attained during one cycle, see also Fig. 2 in the main text) of F-actin/HMM networks.
Nonlinear response to the nonlinear oscillations in the main text for five identically
prepared samples. All five curves exhibit the features of stationary and dynamic stiffening
and softening. For one sample (dotted line), the nonlinear modulus K̂ dramatically
decreases at 40 % strain amplitude. This may be indicative of the F-actin network
detaching from the rheometer plates, which is often observed for F-actin networks at large
strains [5]. The sudden breakdown stands out from the much gentler shakedown in all
other samples.
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Figure F. Recovery of the normalized loss angle after a transient shear pulse of an
amplitude of 10% (circles) and 30% (squares), corresponding to the stiffness data in Fig. 3
in the main text. Solid lines represent exponential fits. Zero time marks cessation of the
strain pulse. Normalization according to the procedure described in Materials and
Methods.
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