Skip to main content
Advertisement
Browse Subject Areas
?

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here.

< Back to Article

The Interaction Properties of the Human Rab GTPase Family – A Comparative Analysis Reveals Determinants of Molecular Binding Selectivity

Figure 1

Rab GTPases as molecular switches.

A: Schematic figure showing the interactions of a Rab-GTPase with its effector proteins. The Rab protein is geranyl-geranylated near the C-terminus to enable membrane binding. Guanine nucleotide exchange factor proteins (GEFs) accelerate the GDP to GTP exchange and thus convert the GTPase from its inactive into its active form. Guanine nucleotide activating proteins (GAPs) deactivate the Rab GTPase by facilitating the intrinsic GTP hydrolysis. B: Sequence and structural mapping of characteristic segments of Rab proteins. Rab family-specific (RabF1-RabF5) sequence segments that are distinct for Rab GTPases and distinguish them from other small GTPases of the Ras superfamily (Pereira-Leal and Seabra, 2001) are mapped onto the crystal structure of the Rab5A GTPase from H. sapiens in an active conformation (Terzyan et al., 2004) (displayed in orange-red). Rab subfamily (RabSF1-RabSF3) specific sequence segments are characteristic for subsets of the Rab GTPases in which each subfamily displays a high sequence identity (displayed in green) (Pereira-Leal and Seabra, 2000). The nucleotide is shown in pink. The Switch I and II regions, which undergo large nucleotide dependent conformational transitions, are labeled.

Figure 1

doi: https://doi.org/10.1371/journal.pone.0034870.g001