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Modeling the spread of methicillin-resistant

Staphylococcus aureus in nursing homes for elderly

By Farida Chamchod and Shigui Ruan

1 Analysis of the deterministic model

Because the number of beds in nursery homes is fixed, we assume that

Λ = γuU + γcC.

Hence, the total number of residents remains constant in the model. Note that the total number
of HCWs is also constant.

1.1 Existence and Uniqueness of Steady states

• There exists a disease-free steady state only when there is no admission of colonized individ-
uals (λ = 0). The disease-free steady state is as follows:

(U,C,H,Hc) = (Nr, 0, Nh, 0).

By setting the RHS of (1) in the main text equaling zeros, the disease-present steady state is
as follows:

(U,C,H,Hc) =

(
Nr − C∗, C∗, Nh −H∗

c ,
αhNhC

∗

µNh + αhC∗

)
,

where P (C∗) is a polynomial function of C∗ and C∗ satisfies the following equation:

P (C∗) = c3C
∗3 + c2C

∗2 + c1C
∗ + c0 = 0,

with

c3 = βrαh,
c2 = λαhNr(γu − γc) + (ω + γc)αhNr + βrµNh + (βh − βr)αhNr,
c1 = −λγuαhN

2
r + λµNrNh(γu − γc)− βrµNrNh − βhαhN

2
r + µNrNh(ω + γc),

c0 = −λγuµN
2
rNh.

It is clear that c0 is always negative and c3 is always positive. We study the existence and uniqueness
of the disease-present steady state by considering roots of P (C∗) or using Descarte’s rule of signs.
We consider four cases of λ and βr according to whether there are admission of colonized residents
and contacts among residents.
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1. λ > 0 and βr > 0. By further assuming that βh > βr, it is obvious that c2 is positive for all
positive values of parameters (as (1 − λ)αhNrγc > 0). We rewrite the polynomial for C∗ as
follows:

P (C∗) = C3C
∗3 + C2C

∗2 ± C1C
∗ − C0, Ci > 0, i = 0, 1, 2, 3.

Either c1 is positive or negative, there is only one sign change in P (C∗) (+,+,+,-, or +,+,-,-).
By Descarte’s rule, there is one positive real root of P (C∗). Set κ = −C∗. Hence,

P (κ) = C3κ
3 − C2κ

2 ± C1κ+ C0.

Whether c1 is positive or negative, there are two sign changes in P (κ) (+,-,+,+, or +,-,-,+).
By Descarte’s rule, there are either two or zero positive real roots of P (κ) or in other words
two or zero negative real roots of P (C∗). Therefore, there are exactly one positive real root
and possibly two negative real roots or complex conjugate roots of P (C∗). In case βh > βr
is not assumed, it is possible that c2 can be either positive or negative. If it is positive, it
follows from the above result we have just shown. If not, let c2 = −C2. Hence,

λµNrNh(γu − γc) + µNrNh(ω + γc) = −µNhC2

αh
−

βrµ
2N2

h

αh
− βhµNrNh + βrµNrNh.

Substituting this argument into c1, we obtain

c1 = −λγuαhN
2
r − βhαhN

2
r − µNhC2

αh
−

βrµ
2N2

h

αh
− βhµNrNh = −C1.

Consequently, if c2 is negative, we find that c1 is also negative. By considering the change of
signs, there is only one sign change (+,-,-,-) in P (C∗) and there are two sign changes in P (κ).
Hence, there are only one positive real root and possibly two negative real roots or complex
conjugate roots of P (C∗). In conclusion, there always exists a unique non-zero positive real
root C∗ for all λ > 0 and βr > 0.

2. λ > 0 and βr = 0. This is likely to occur in nursery homes with bed-bound residents or
private houses. We have c3 = 0 in this case. Clearly, the coefficient c2 is positive. We do not
have information about the sign of c1. Hence, we consider both positive and negative values
of c1. We write the polynomial P (C∗) as follows:

P (C∗) = C2C
∗2 ± C1C

∗ − C0, Ci > 0, i = 0, 1, 2.

The explicit real solutions of P (C∗) are

C∗ =
∓C1 ±

√
C2
1 + 4C0C2

2C2
.

Because C1 <
√

C2
1 + 4C0C2, we can always find a positive real root of P (C∗) such that

C∗ =
−C1 +

√
C2
1 + 4C0C2

2C2
if c1 > 0 or

C1 +
√

C2
1 + 4C0C2

2C2
if c1 < 0.

Hence, there exists a unique non-zero positive real root when λ > 0 and βr = 0.

3. λ = 0 and βr > 0. We rewrite the coefficient c1 as follows:

c1 = µNrNh(1−R0)(ω + γc),
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where

R0 = R0r +R0h =
βr

(ω + γc)
+

βhαh

µ(ω + γc)

Nr

Nh
.

The polynomial P (C∗) becomes

P (C∗) = C3C
∗3 ± C2C

∗2 ± C1C
∗, Ci > 0, i = 1, 2, 3.

Obviously, zero is one of the roots of P (C∗). In case c2 is negative, we can easily show that c1
is also negative (see above). Consequently, there exists a unique non-zero positive real root
of P (C∗) which is

C∗ =
−C2 +

√
C2
2 + 4C1C3

2C3
.

If c2 is positive, c1 can be either positive or negative. However, if c1 is positive, the other
two roots of P (C∗) are either both real and negative or complex conjugates. There exists
a unique non-zero positive real root of P (C∗) if only if c1 is negative or R0 > 1. Hence, a
sufficient condition for a unique non-zero real positive root of P (C∗) is R0 > 1.

4. λ = 0 and βr = 0. The coefficient c2 is always positive and we write

c1 = µNrNh(1−R0h)(ω + γc).

The polynomial P (C∗) can be written in the following form:

P (C∗) = C2C
∗2 ± C1C

∗, Ci > 0, i = 1, 2.

Hence, there exists a unique non-zero positive real root

C∗ =
C1

C2
if and only if c1 < 0 or R0h > 1.

In conclusion, for all λ > 0 and βr ≥ 0, there always exists a disease-present steady state. In case
λ = 0, for all βr ≥ 0 there exists the disease-present steady state if and only if R0 > 1.

1.2 Stability analysis

We first study long-term dynamics of (1) when there is admission of colonized residents (λ > 0).
In this case, there only exists a disease-present steady state. The Jacobian matrix of (1) at the
disease-present steady state is

J∗ =

[
−λ(γu − γc) + βr − 2 βr

Nr
C∗ − βh

Nh
H∗

c − (ω + γc)
βh
Nh

(Nr − C∗)
αh
Nh

(Nh −H∗
c ) − αh

Nh
C∗ − µ

]
.

The characteristic equation of J∗ is

z2 + a1z + a2 = 0,

with

a1 = µ+ αh
Nh

C∗ + λ(γu − γc) + (ω + γc) + 2 βr

Nr
C∗ + βh

Nh
H∗

c − βr,

a2 =
(
µ+ αh

Nh
C∗

) [
λ(γu − γc) + (ω + γc)2

βr

Nr
C∗ + βh

Nh
H∗

c − βr

]
− βh

Nh
αh(Nr − C∗)(Nh −H∗

c ).
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At the disease-present steady state (from the right-hand sides of (1) equaling zeros), we have

λ(γu − γc) + (ω + γc) =
1

C∗

[
λγuNr +

(
βr
Nr

C∗ +
βh
Nh

H∗
c

)
(Nr − C∗)

]
and

µ+
αh

Nh
C∗ =

αh

H∗
c

C∗.

Substituting these two terms into a1 and a2, we obtain

a1 = µ+
αh

Nh
C∗ + λγu

Nr

C∗ +
βh
Nh

H∗
c

C∗ +
βr
Nr

C∗ +
βh
Nh

H∗
c

and

a2 = αhλγu
Nr

H∗
c

+ αh
βh
N2

h

H∗
c (Nr − C∗) + αh

βr
Nr

C∗2

H∗
c

+ αh
βh
Nh

C∗.

Clearly, a1 > 0 and a2 > 0. By the Routh-Hurwitz criteria, the disease-present steady state is
stable for all positive C∗. Because we can always find a unique non-zero real positive root of P (C∗)
for all λ > 0 and βr ≥ 0, the disease-present steady state is stable.

Secondly, let us consider a stability condition of (1) when there is no admission of colonized
residents (λ = 0). When λ = 0, there are two steady states: the disease-free and present steady
states. The disease-free steady state always exists. However, the disease-present steady state exists
if and only if R0 > 1. At the disease-free steady state, the Jacobian matrix is

J0 =

[
βr − (ω + γc) βh

Nr
Nh

αh −µ

]
.

Consequently, we have

trace(J0) = (ω + γc + µ)

(
βr

(ω + γc + µ)
− 1

)
, and det(J0) = µ(ω + γc)(1−R0).

If R0 < 1, we have det(J0) > 0, and trace(J0) < 0 because βr

(ω+γc+µ) < R0r < 1. By the Routh-
Hurwitz criteria, the disease-free steady state is stable if R0 < 1. In a similar way in deriving a
stability condition for the disease-present steady state when λ > 0, the disease-present steady state
is stable if R0 > 1. Therefore, the disease-free steady state is stable if and only if R0 < 1 and the
disease-present steady state is stable if and only if R0 > 1.

1.3 Hand hygiene compliance

One of the methods to investigate hand hygiene compliance in mathematical models is by including
the term (1− η), where η is the fraction of HCW/resident hand hygiene compliance (η = 0 means
no compliance and η = 1 means perfect compliance) in the transmission terms (DAgata et al. [1]).
This (1 − η) term consequently reduces the transmission rate or the probability of colonization
when the number of contacts is fixed. However, we do not consider this factor in detail but only
demonstrate that hand hygiene compliance that may relate to the probability of colonization in
residents may help to reduce MRSA prevalence in nursing homes.

Figure 1A shows that the prevalence of MRSA increases when the probability of colonization in
residents by contacting with colonized residents and the number of contacts among them increase.
It also increases when the probability of colonization in residents by contacting with contaminated
HCWs and the number of contacts between residents and HCWs increase.
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Figure 1: Hand hygiene compliance. (A) Prevalence of MRSA as a function of the average number
of contacts among resident and the probability of colonization by contacting with a colonized
resident. (B) Prevalence of MRSA as a function of the average number of contacts between HCWs
and residents and the probability of colonization by contacting with a contaminated HCW.

2 Derivation of the mean, variance, and covariance equations of
the stochastic model

We study a stochastic model based on the ODE system (1) by using the continuous time Markov
chain process (CTMC). In the model, time is continuous but state variables are discrete. Because
we assume that both of the total populations (residents and HCWs) are constant, the process is
bivariate, {C(t),Hc(t)} with U(t) = Nr−C(t) and H(t) = Nh−Hc(t). A joint probability function
is given by

p(C,Hc)(t) = Prob{C(t) = C,Hc(t) = Hc}.

This bivariate process has the Markov property and the transition probabilities are shown in Table 2.
From transition probabilities, we can write the forward Kolmogorov differential equations as follows:

dp(C,Hc)
dt = p(C − 1, Hc)λ[γuNr − (γu − γc)(C − 1)]

+p(C − 1,Hc)
βr

Nr
(Nr − C + 1)(C − 1)

+p(C − 1,Hc)
βh
Nh

(Nr − C + 1)Hc

+p(C + 1,Hc)(ω + γc)(C + 1)
+p(C,Hc − 1) αh

Nh
(Nh −Hc + 1)C

+p(C,Hc + 1)µ(Hc + 1)− p(C,Hc){λ[γuNp − (γu − γc)C]

+ βr

Nr
(Nr − C)C + βh

Nh
(Nr − C)Hc

+(ω + γc)C + αh
Nh

(Nh −Hc)C + µHc}.

These equations can be used to derive formulae for the rates of change of the expected numbers
of colonized residents and contaminated HCWs (E(C), E(Hc)), and the higher moments such as
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variances and covariance. Here, we introduce the moment generating function (MGF). Define

M(θ1, θ2, t) = M(θ, t) = E(eθ1C+θ2Hc).

We can rewrite the forward Kolmogorov equations in terms of the moment generating function as
follows:

∂M
∂t = (eθ1 − 1)

(
λγuNrM − λ(γu − γc)

∂M
∂θ1

)
+(eθ1 − 1)

(
βr

∂M
∂θ1

− βr

Nr

∂2M
∂θ21

)
+(eθ1 − 1)

(
βh

Nr
Nh

∂M
∂θ2

− ∂2M
∂θ1∂θ2

)
+ (e−θ1 − 1)(ω + γc)

∂M
∂θ1

+(eθ2 − 1)
(
αh

∂M
∂θ1

− αh
Nh

∂2M
∂θ1θ2

)
+ (e−θ2 − 1)µ∂M

∂θ2
.

To derive the equations for means, variances, and covariance of the stochastic model, it is more
convenient to use the cumulant generating function which is a logarithm of the moment generating
function. Define

K(θ1, θ2, t) = logM(θ1, θ2, t).

The time derivative for the cumulant generating function K is given by

∂K
∂t = (eθ1 − 1)

(
λγuNp − λ(γu − γc)

∂K
∂θ1

)
+(eθ1−1 − 1)

(
βr

∂K
∂θ1

− βr

Nr

[
∂2K
∂θ21

+
(
∂K
∂θ1

)2
])

+(eθ1 − 1)
(
βh

Nr
Nh

∂K
∂θ2

− βh
Nh

(
∂2K

∂θ1∂θ2
+ ∂K

∂θ1
∂K
∂θ2

))
+(e−θ1 − 1)(ω + γc)

∂K
∂θ1

+ (e−θ2 − 1)µ ∂K
∂θ2

+(eθ2 − 1)
(
αh

∂K
∂θ1

− αh
Nh

(
∂2K

∂θ1∂θ2
+ ∂K

∂θ1
∂K
∂θ2

))
.

The cumulant generating function can be expanded in terms of the cumulants kij as follows:

K(θ1, θ2, t) =
∞∑
k=1

k∑
j=0

kj(k−j)

j!(k − j)!
θj1θ

k−j
2 .

By substituting this power series into the time derivative equation of K, the time evolution of the
moments of orders one and two is described by:

dE(C)
dt = λ[γuNr − (γu − γc)E(C) + βrE(C)− βr

Nr
(Var(C) + E(C)2)

+βh
Nr
Nh

E(Hc)− βh
Nh

(E(C)E(Hc) + Cov(C,Hc)),
dE(Hc)

dt = αhE(C)− αh
Nh

(E(C)E(Hc) + Cov(C,Hc))− µE(Hc),
dVar(C)

dt = λγuNr − λ(γu − γc)(E(C) + 2Var(C)) + 2βrVar(C)

−2 βr

Nr
TCCC − 4 βr

Nr
E(C)Var(C) + βrE(C)− βr

Nr
Var(C)

− βr

Nr
E(C)2 + 2βh

Nr
Nh

Cov(C,Hc)− 2 βh
Nh

TCCHc

−2 βh
Nh

(E(C)Cov(C,Hc) + E(Hc)Var(C)) + βh
Nr
Nh

E(C)

− βh
Nh

Cov(C,Hc)− βh
Nh

E(C)E(Hc) + (ω + γc)(E(C)− 2Var(C)),
dVar(Hc)

dt = 2αhCov(C,Hc)− 2 αh
Nh

(E(C)Var(Hc) + E(Hc)Cov(C,Hc) + TCHcHc)

+αhE(C)− αh
Nh

Cov(C,Hc)− αh
Nh

E(C)E(Hc)− 2µVar(Hc) + µE(Hc),
dCov(C,Hc)

dt = −λ(γu − γc)Cov(C,Hc) + βrCov(C,Hc)− βr

Nr
TCCHc

−2 βr

Nr
E(C)Cov(C,Hc) + βh

Nr
Nh

Var(Hc)− βh
Nh

TCHcHc

− βh
Nh

(E(C)Var(Hc) + E(Hc)Cov(C,Hc))

−(ω + γc)Cov(C,Hc) + αhVar(C)
− αh

Nh
(E(C)Cov(C,Hc) + E(Hc)Var(C) + TCCHc)− µCov(C,Hc),
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where TCCHc is the third central moment E([C−E(C)]2[Hc−E(Hc)]), for example. For simplicity,
all the third central moments are approximated by zeros (Kurtz [2,3]).

3 Additional results for the stochastic model
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Figure 2: Stochastic results with different sizes of nursing homes. Blue lines represent the mean
values of stochastic results evaluated from 5000 realizations. Examples of 20 realizations from 5000
realizations are shown in (A) Nr = 50, (B) Nr = 100, (C) Nr = 200, and (D) Nr = 500. Note
that the red line in (A) is an example of results when MRSA goes extinct and emerges again. One
possibility accounting for this occurrence is the presence of colonized residents at admission.
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