Supporting Information 2.  Proof that the mean range equals the proportion of species shared.
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The NxN matrix 
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 contains in its diagonal, the richness of sites 1,2,…N, denoted by i,i and in the off-diagonal elements, the number of species shared by two sites, and denoted by  i,h. This follows from the fact that element i,h in the A matrix is simply 
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, which, since the delta values are 1 or 0, is but a count of all the joint occurrences of all  S species in localities i and h. 

The matrix 
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 of dimension SxS, contains the range value of each species, along the diagonal, and the number of localities shared by species j and k, j,k, off the diagonal. 

Let = the vector of values of ranges of the S species, and recall that  = the vector of the total values of the ranges of the species inhabiting the N sites. Since 
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 then it is obvious that
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, where 1 is a row vector of N 1s. And since
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, then it is also obvious that:
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In other words, the sum of the ranges of a species in a site equals the sum of the shared species of that site with all the other sites in the world. The mean-range vector is then:
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which, by the preceding equation, is the vector of total shared species of each site, proportional to the richness of each site. The vector of mean proportional ranges 
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 is therefore equivalent to a vector of average proportional (to its richness) shared species of every site to the rest.
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