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Background 

Leprosy is a disease caused by infection with the bacterium Mycobacterium leprae. 

Leprosy evolves in a spectrum between two poles (tuberculoid and lepromatous leprosy). The 

infection is eventually cleared for those with tuberculoid leprosy, while the lepromatous form 

is chronic. Not all people are susceptible to leprosy, and a marked heterogeneity exists in this 20 

susceptibility. This may be because of a resistance against infection or a sufficiently fast 

clearance of the infection to prevent disease1. For those developing leprosy, the incubation 

period of the disease is long, with 4 to 11 years depending on the type of leprosy 2. Especially 

contacts of known leprosy patients are at risk of developing leprosy. These individuals have a 

higher exposure, but could also be more likely to be susceptible than people in the general 25 

population due to shared environment –household– or familial relationship to the patient.  

Modeling can aid to extrapolate trial outcomes of one study to whole populations or from a 

short time frame to longer time periods. This provides a way to compare different control 

strategies. Modeling is also a way of getting insight into underlying natural mechanisms, e.g. 

the aforementioned heterogeneity in susceptibility. Models for leprosy have up to now not 30 

taken into account the household structure of a population, and explicit genetic 

mechanisms3,4. We aim to assess dynamics on a household level, thus the household structure 

of population needs to be incorporated. As leprosy has a long incubation period1 the timescale 

at which the disease evolves and the timescale at which households changes are comparable. 

This means that a household often does not have the same composition at the end of the 35 

infection as it was at the moment of infection. Individuals including those infected, can have 

moved out or new (possibly infected) individuals can have moved into the household. We 

take up the challenge to explicitly model the formation and change of household 5. The model 

will be parameterized for northwest Bangladesh6 and fitted to the detailed disease data of a 

trial in the same area7.  40 

Microsimulation 

SIMCOLEP simulates leprosy transmission in a population structured by households that 

form and dissolve during the simulation. The model is a microsimulation or a stochastic 

individual-based model 8,9. The model simulates the life history of fictitious individuals, 

including the household formation, and the natural history of infection with M. leprae. The 45 

state of an individual changes during events that are scheduled in continuous time. The timing 

of events is determined by probability distributions, which is determined by the current state 

and history of an individual. The model is divided into two modules: a population module, 

and a disease module. The population module describes processes unrelated to disease or 
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infection, such as birth, death and marriage. The disease module simulates processes of 50 

infection and disease, including interventions. 

A computer program was written in JAVA 1.5.0 12 to make the calculations of the model 

using a similar structure as STDSIM 13. To explicitly simulate an infectious disease requires 

the simulation of many interacting individuals, and can become computationally demanding. 

Reliable simulation of a relatively rare infectious disease, such as leprosy, requires a large 55 

population. To keep computation time within reasonable limits, we used the MUSIDH 

method 14 with a setting of 50 disease histories to 1 life history. In short this method implies 

that every demographic life history (birth, death etc.) is used as if 50 individual have exactly 

the same demographic life history, while disease events differ between these 50 individuals. 

This prevents the simulation of many demographic life histories. 60 

Population module 
The population grows with a time-dependent growth rate. In total we recognized three 

population growth phases (see Figure S-1) and choose to model population growth with 

exponential growth during these three phases. For the population before 1800, we assumed a 

constant population (i.e. a growth rate of 0 y-1). The second phase of slow growth from 1800 65 

until 1950 occurred with a rate of 0.007 y-1. From 1950 onwards the population grows with a 

rate of 0.0235 y-1. The population growth-curve after 1800 was obtained from extrapolations 

based on census data 10,15. The population size is kept at the required size by replacing deaths 

by births, and population growth is accomplished by additional births. We assumed a closed 

 

Figure S-1 Population size of Bangladesh from 1775 to 2000. First official census was conducted in 

1901; other data points are estimates 10,11. The solid line is exponential growth curve used as input for 

the model with three phases: (I) A constant population size (II) slow growth with rate 0.007 y-1, and 

(III) fast growth with 0.0235 y-1. 
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population, hence no migration. The population size in the simulations was 20,000 in 1800, 70 

growing to 195,500 in 2003. 

At birth, a new individual is created and the age of death is determined by a sex-dependent 

survival curve, which changes with calendar time (see Figure S-2). We used the available 

survival data from 1961 until 2000 10,15. Survival data previous to 1961 were not available, 

and therefore we used the survival curve of 1961 for all years previous to that. 75 

The newly created individual is placed into a household in which a married female is 

available as mother. The actual mother is randomly selected from all married females 

weighed by her age. The age-weighed selection of a mother is based upon age specific birth 

rates 15. The birth rates for 1995 are shown in Figure S-3.   

Unmarried males and females can be coupled during wedding events, which are scheduled 80 

such that the proportion of married people in each age group matches census data (Figure S-4 
15). After the death of a married person, the surviving spouse is again a candidate for marriage 

again. At marriage, 25% of couples create a new household; for the other couples the female 

will become member of the household of the male. In the latter case, the household will split 

up with a rate of 0.083 y-1
 (i.e. after 12 years), and the married couple and their possible 85 

children will create a new household. 

 

Figure S-2 Input survival curves for males (A) and females (B) in Bangladesh for the years 1961 until 

2000 11 
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Figure S-3 Example of the input of age specific birth rates for women (Bangladesh, 1995), given as the 

number of children born to 1,000 women in a specific age group 11. 

Movement other than by marriage takes place between households by 30% of non-married 

males. The age is of movement is chosen randomly from a uniform distribution between 12 

and 22 years of age. Twenty percent of these moving males create a new household. For the 

others a new household is randomly chosen weighed by the size of the household. The weight 90 

is 0.25 for households of size 1 and increase linearly to 1.0 at 4 and then linearly decreases to 

a weight of 0.0 for households of size 50. Hence, movement to households of size 4 is most 

likely, that become households of size 5 after movement. In the simulations, household sizes 

maximized at 25 inhabitants. 

Data to directly quantify the parameters for the model of movement of people are unavailable, 95 

and therefore the above-mentioned values were obtained by calibrating the model to mimic 

the distribution of household sizes in Nilphamari district in Bangladesh and the percentage of 

people that moved during a 2-year period. The observed average household size was 4.6 

(ranging from 3.9 to 5.9 between villages), and 3.1% of the population moved per year 

(ranging from 2.0% to 3.6% between villages) 6. The calibration of parameters gave an 100 

average household size of 4.3 and the movement rate was 2.9% per year. Simulated 

household sizes were slightly larger than observed, but the household size distribution did not 

differ significantly from the data 6 (χ2 test, p = 0.25, Figure S-5).  
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Figure S-4 Example of the input of fraction males and females per age group currently married 

(Bangladesh,1991) 11. 

Disease module 105 
The disease module exists of four separate, but interacting components: transmission, 

natural history of infection, allocation of susceptibility and type of leprosy, and interventions.  

Transmission 
Transmission occurs during events in which an infectious individual has contact with a 

susceptible individual. We modeled two transmission processes (1) in the general population 110 

and (2) an additional within-household transmission. The contacts in the general population 

are made indiscriminately to people within and outside the household of the infectious 

individual, while the within-household transmission takes place during contacts of household 

members.  

With a contact between two individuals is meant that this contact event is “close-enough 115 

for transmission” of the infection. The actual probability of transmission during these close-

enough contacts is scaled by the infectivity function. The infectivity function, A(τ), is the 

probability of transmission as a function of the time since infection, τ .  Here, the infectivity 

function is a continuous linear function from 0 to 1 during the asymptomatic state, and 

constant at 1 during the symptomatic state. Transmission events from an infectious individual 120 

to other individuals in the general population are timed according to a non-stationary Poisson 

process 16 with the rate function determined by the product of the population contact rate, cpop,  
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and the infectivity function, A(t). Equation S-1 gives the expected number of events during 

the period 0 to t. The next event is found by determining for a random variate U the expected 

time until 1 transmission event making use of the inverse of Equation S-1, Λpop
-1 16. Such a 125 

transmission process is called frequency dependent transmission (or mass action)17, which 

means that the number of contact events per individual per time unit (i.e. year) is independent 

of the population size.  

∫⋅=Λ
t

poppop dAct
0

)()( ττ      Eq. S-1 

Additional to these infections, a within-household transmission process is modeled. A 130 

susceptible living in a household with one or more infectious individuals can be infected 

within the household. The within-household transmission process is modeled by density 

dependent transmission (or pseudo mass action)17, which means that the number of contact 

events per individual per time unit increases with the household size. The rate at which 

susceptible individuals are infected is determined by all infectious individuals in a household 135 

and the within-household contact rate, chh. For each couple of an infectious individual and a 

susceptible individual in a household, a transmission event is determined by chh and A(t) 

similar to Equation S-1. The susceptible individual will be infected during the first 

 

Figure S-5 Result of calibration of simulation population module to the observed distribution of 

household size in Northwest Bangladesh in 2006(N = 859)6. There is no significant difference between 

data and simulated distribution (p = 0.25, χ2-test). 
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transmission. With I infectious individuals in a household the time until the transmission 

event is determined for I random variates of a uniform distribution (U1, ...,UI) producing the 140 

minimal time until the transmission event. 

 

)}ln(),...,ln(min{ 1
1

1
Ihhhhontransmissi UUT −Λ−Λ= −−

    Eq. S-2 

Natural history of infection 

The value of the infectivity function, the probability of detection and the rate of self-145 

reporting depend on the state of the infection. The infection is modeled by discrete infection 

states. After infection individuals are either in the asymptomatic state, the symptomatic state, 

or the recovered state. We used the structure and estimates for the natural history of the 

infection as Meima et al. 2. 

Infection and disease variables, such as detection probability and the infectivity function, 150 

have a value corresponding to the infection state, or for the infectivity function the proportion 

of time spent in the state. The model distinguishes never-susceptible and susceptible 

individuals. Simulations are done for 5%, 10% or 20% susceptibles in the population. Of the 

susceptible individuals a fraction of 80% will go through a self-healing infection, and the 

remaining 20% of susceptibles becomes chronically infected 1,2,18.  155 

The self-healing type is never infectious 2. The duration of the asymptomatic state is 

gamma distributed with mean 4.2 years and a standard deviation of 1.9 years1,2. In the 

symptomatic state, the self-healing type is detectable during examination and will be treated 

immediately after infection. The self-healing type is uninfected, and recovered without 

symptoms at the moment of self-healing. The time until self-healing from onset of symptoms 160 

is exponentially distributed with rate 0.2 (i.e. mean duration of 5 years). The self-healing type 

is assumed never to be infectious. 

The chronic infection has an asymptomatic period with mean 11.1 years and standard 

deviation of 5.0 years, and will be symptomatic until treatment or death of the individual. 

During the asymptomatic period the infectivity of an individual, i.e. the probability of 165 

infecting during a sufficiently close enough contact, increases linear to one at first symptoms. 

Treatment is given directly at detection and makes an infectious individual immediately 

non-infectious. Relapse of disease after treatment for both chronic and self-healing infections 

occurs with a rate depending on calendar time. Between 1970 and 1990 dapsone monotherapy 

is given, and relapses occur with a rate of 0.015 y-1, and after full implementation of multi-170 

drug therapy (MDT) in 1990 the relapse rate is 0.001 y-1 19. Of all treated cases including 

those of the self-healing type, 90% will relapse as a chronic infection, and 10% as a self-

healing infection20.  
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Allocation of susceptibility and type of leprosy 

The susceptibility of an individual is determined by one of six mechanisms of allocation of 175 

susceptibility and of the type of leprosy (self-healing or chronic infection): 

• Random, Equal probability for each individual, i.e. random allocation of susceptibility and 

type of leprosy 

• Household; Random sample of individuals in randomly selected households  

• Dominant genes inherited from one or both parents; both susceptibility and the type of 180 

leprosy 

• Recessive genes inherited from both parents; both susceptibility and the type of leprosy 

• 50 % by Household and 50% by dominant genes 

• 50 % by Household and 50% by recessive genes 

For Random, individuals are determined to be never susceptible, self-healing or chronic 185 

randomly at birth. For Household, when a household is created, it is determined whether it 

contains susceptible inhabitants with in total 25% of the households containing susceptibles21. 

However, not all inhabitants of such a household will be susceptible, and at birth, it is 

determined whether or not an individual is susceptible, when living in a susceptible 

household. For the three percentages of susceptibility in the population, 5%, 10% and 20%, 190 

respectively 20%, 40% and 80% of the inhabitants of the household is susceptible. The type 

of leprosy (self healing or chronic) is determined randomly for susceptible individuals. The 

genetic mechanisms are governed by two22 genes (one for susceptibility and one for the type 

of leprosy). These genes are both either dominant or recessive. Children inherit one allele of 

a gene from both parents. The final combination of alleles – the genotype – then determines 195 

the phenotype consisting of susceptibility and type of leprosy. The fifth and sixth mechanisms 

are combinations of Household and dominant and Household and recessive. In these 

mechanisms, half of the susceptibles was susceptible due to their genetic make up, and the 

other half due to living in a susceptible household 23.  

Due to the length of simulations (over 1000 simulated years) genetic drift causes 200 

divergence from the starting frequencies of phenotypes in the genetic scenarios. The 

proportion of alleles at the start of the simulations is taken such that the percentage 

susceptibles is 5%, 10% or 20% during the last 50 years of the simulations. 

Leprosy control  

The leprosy control program starts in 1970 with passive case detection and treatment. 205 

Detection delays are gamma distributed, and start with mean 12 years and standard deviation 

3.5 years in 1970, and decreases to a mean of 2 years (standard deviation 1.4 years) in 1994 
24. If a self-healing infection heals before the randomly determined passive case detection, the 

‘case’ will not be detected. At the moment of passive case detection, the individual is 
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diagnosed based on the infection state. Two diagnoses are possible mild disease and severe 210 

disease. Mild disease is the diagnosis for the symptomatic state of the self-healing type and 

severe disease for the symptomatic state of the chronic type.  

Household members of a detected case are subject to contact tracing (i.e. active case 

detection) from 1990 onwards. During contact tracing, the probability of a positive diagnosis 

is determined by the detection probability of the infection state of an individual. Contacts are 215 

followed up yearly for 3 consecutive annual visits at each of them 90% will be examined. 

Contacts can be diagnosed as “no disease” for individuals that are uninfected and in the 

asymptomatic states; furthermore 10% symptomatic cases are missed during examination and 

thus incorrectly given the diagnosis “no disease”. The remaining 90% of symptomatic cases is 

diagnosed as mild disease for self-healing infections or severe disease for chronic infections.  220 

BCG, a vaccine used against tuberculosis, has a protective effect against leprosy. In this 

study, we choose a life-long protective effect of 60% against infection with M. leprae 25,26. 

Only BCG vaccination prior to infection with M. leprae has a protective effect. BCG 

vaccination of newly born children starts in 1974. The model starts with a BCG campaign in 

1974 in which 40% of all children between age 0 and 10 are vaccinated. From 1975 until 225 

1980, 40% of children are vaccinated. From 1980 until 1990 the BCG vaccination coverage 

increases up to 80% and on that level it remains until the end of simulations26,27. 
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Estimation of contact rate parameters, cpop and chh 

The two contact rates, cpop and chh, were estimated by fitting the model to data from the 230 

DBLM registers in Nilphamari, and a study among contacts of leprosy patients by Moet et al7. 

The model was fitted to three aspects of the data: (1) new case detection in 2003, (2) 

prevalence among contacts by 6 household size categories, and (3) the distribution of 

previously undetected cases among household contacts for 5 categories of relationship to the 

index patient. The microsimulation model produces estimates for each aspect of the data set 235 

under different values of cpop and chh, which are compared to data by a log-likelihood function.  

The microsimulation model produces a new case detection rate as a function of cpop and chh, 

denoted by λ(cpop, chh). As matter of convenience, we will drop the notation for simulation 

outcomes as a function of the contact rates (e.g. λ means λ(cpop, chh)). In this section we 

reserve Greek letters for the simulation outcomes and a Latin letter for data. The log-240 

likelihood of the observed number of new case detection k is determined assuming a Poisson 

distribution with simulation outcome rate λ (Equation S-3).  

λλλ −+= )ln(
!

1
ln)|( k

k
kLNCDR       Eq. S-3 

 

The second aspect of the dataset determines the fit to the prevalence of previously undetected 245 

cases among household contacts. The parameters, αi, are the simulated rates of the Poisson 

distribution for the size household size categories: 2+3, 4, 5, 6, 7, 8 or more inhabitants. 

Variables si indicate the observed number of cases for household size category i. The log-

likelihood is the sum of Poisson log-likelihoods for all household sizes (Equation S-4). 
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The third aspect determines the fit to the data on 5 categories of relationships to the index 

patient: spouse, child, parent, sibling or other relationships. The simulated probability for a 

person of relationship category i of being cases is indicated by πi. The variables, ri, give the 

number of cases in a relation category i. The total number of contacts of a certain relationship 255 

category is indicated with ni.. The log-likelihood is the sum of Binomial log-likelihoods for all 

relationships (Equation S-5). 
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The overall log-likelihood was used to determine the fit of the combination of contact 260 

rates. The combination of contact rates with the highest log-likelihood is the best model 

quantification. The fit to all datasets are combined in the log-likelihood function S-6. 

Constant C is the sum of the parts of Equations S-3 to S-5 that do not depend on simulation 

outcomes, only on the data, and are therefore equal for any assumed combination of cpop and 

chh. This constant can be ignored for the maximization.  265 
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The log-likelihood ratio is the difference between the values of Equation S-6 for two different 

parameters sets obtained from two different models. The log-likelihood ratio times -2 is 

approximately χ2-distributed, which can be used to test whether two models are significantly 270 

different.  

Metamodel 

We use a regression model as metamodel 28 fitted to the 11 x 11 parameter grid of 

simulations (Figure S-6  an S-7). The regression model is derived for the section of the grid in 

which the minimum is found. The regression model can be used to determine the optimal 275 

parameter combination. The likelihood ratios were fitted to a polynomial regression model 

(see eq. S-7).  

2
5

2
43210),( hhpophhpophhpophhpop cbcbccbcbcbbccf ⋅+⋅+⋅⋅+⋅+⋅+=         Eq. S-7 

The regression model Equation S-7 was estimated for all possible combinations of linear 

and log-transformed outcomes and parameters. For each scenario, the regression model with 280 

the transformations yielding the highest adjusted R2
 –coefficient of determination– was used 

as metamodel. The metamodels were used to determine the best fitting parameter 

combination. The metamodel is used to find the optimal parameter values and the 95% 

confidence around such an optimum. Figure S-6 and S-7 show the results of the simulation 

grids, and plots of the metamodels. Thereafter, the log-likelihood was determined by the 285 

median of 9 times 100 runs of the simulation model for these parameter combinations (see 

table S-1).
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Table S-1 Estimated best fitting parameter combination calculated from the metamodel. The 

model fits are determined by the median of 9 times 100 runs. 

Model fit Mechanism cpop chh 

LNCDR
a LHh size

b Lrelationship
c 

Total fit 

L 

5 % susceptibles      

Random - - - d - d - d -d 

Household 11.50 11.07 1.1 2.3 13.1 16.5 

Dominant 23.10 11.27 0.1 7.9 34.7 42.8 

Recessive 27.36 8.76 4.1 10.2 38.3 52.6 

Household & 

dominant 
12.49 8.96 0.0 5.3 16.1 21.4 

Household & 

recessive  
13.57 13.70 1.4 8.2 17.8 27.5 

10% susceptibles      

Random 5.70 2.44 0.5 19.3 28.5 48.4 

Household 2.90 0.22 2.1 6.7 6.6 13.4 

Dominant 3.35 0.49 1.3 5.8 13.0 20.0 

Recessive 3.79 0.82 1.1 5.0 23.0 29.1 

Household & 

dominant 
2.90 0.20 0.5 6.3 7.4 11.4 

Household & 

recessive  
3.03 0.98 0.0 4.9 8.7 13.7 

20% susceptibles      

Random 1.33 0.98 0.4 5.0 7.0 12.4 

Household 1.08 0.05 3.5 6.5 8.9 18.9 

Dominant - - - d - d - d - d 

Recessive 0.83 0.17 0.0 4.7 17.6 27.5 

Household & 

dominant 
0.87 0.08 0.1 3.6 10.8 14.5 

Household & 

recessive  
0.98 0.11 3.5 3.7 9.2 16.4 

a New Case Detection Rate, Equation S-4 minus constants b Household size, Equation S-5 290 

minus constants cRelationship with patient, Equation S-6 minus constants  dOnly very poor fits 
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Figure S-6 Fit to data. Simulated values and meta-models for all 18 scenarios. The color of the 

simulated grid points indicates the difference with the log-likelihood of the data. The grey diamond 

indicates the location of the best fitting parameters values resulting from the minimum of the 

metamodel. The surrounding thick bordered gray area gives the 95%-confidence area of the 

parameters. For each panel, the color of the simulated grid points indicates the difference with the 

minimum of the metamodel (i.e. the value for the parameter values indicated by the gray diamond). 
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Figure S-7 Fit relative to estimated best fit. Simulated values and meta-models for all scenarios. The 

color of the simulated grid points indicates the difference with the minimum of the best of all 

metamodels. The gray diamond indicates the location of the best fitting parameters values resulting 

from the minimum of the metamodel. The surrounding thick bordered gray area gives the 95%-

confidence area of the parameters. 
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