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S1 Simulations and sensitivity analysis

S2 Model variations and model comparisons

Simulation results in section S2 .2 are based on a slightly different model of the natural

history of infection then the one used for the main results. This model more closely
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resembles the model in [1] and reuses several parameter values from that study. Infection

progresses through five stages of equal average duration 1.89 years. The rate of progression

from stage i to i + 1 is γ = 1/1.89 year−1. This model yields a Gamma-distributed time

interval from infection to AIDS, and was found to accurately reproduce the time to AIDS

for a Dutch cohort in [1]. We will sometimes refer to stage 5 as “late HIV infection”,

which includes individuals with AIDS.

The diagnosis rate in stage 5 is given by the rate µAIDS, which represents increased

rates of diagnosis when patients have AIDS symptoms. Following [1], we fix µAIDS =

12/365 days

Mortality from natural sources occurs at the rate m = 1/40.28 year−1. This rate was

based on US Census data for SE Michigan and accounting for the average age at diagnosis.

S2 .1 Sensitivity to demographic stochasticity

A simulation experiment was carried out with the following aims

• Determine sensitivity of estimates to stochastic population dynamics in contrast to

the deterministic dynamics used in the HIV model (Text S1).

• Determine sensitivity of estimates to the possibility that sampled individuals have

descendants that are themselves sampled. This is an effect which is not captured

by the coalescent model.

• Establish identifiability of parameters βc and δ which respectively describe the rela-

tive infectiousness of those with chronic HIV infection and those that are diagnosed.

These parameters are estimated directly from the HIV phylogeny.

A continuous-time/individual-based simulation was carried out with rates given by the

solution of the deterministic HIV model (see Text S1). The procedure is as follows:

S-2



1. The deterministic model was solved with parameters at the MLE (see main text).

2. Rates of birth and migration (F (t) and G(t)) were abstracted from the model solu-

tion. Deaths (natural and AIDS) were also calculated.

3. Discrete simulations using the Gillespie algorithm were carried out using the given

rate matrices and death rates.

4. A genealogy was abstracted from the simulation by keeping track of which unit

transmitted to each other unit.

5. A sample was collected to replicate our real data. n = 437. Times of sampling and

the stage of infection of each sample unit were matched to real data.

The coalescent likelihood (see Text S2, [2]) was then solved using the deterministic

model over a range of βc and δ parameters. The results of these calculations are shown

in figure S13. We conclude:

• The relative infectiousness of chronic and diagnosed individuals is identifiable under

the conditions described in the analysis presented in the main text.

• Demographic stochasticity can bias estimated transmission rates using a determin-

istic model, but the bias should not be great in absolute terms. For example, in this

experiment, bias in βc was approximately 0.05 on a scale of zero to one. It is also

possible that sampling of direct descendants of those who are already sampled may

bias the estimates, but this bias was not large in this experiment.

S2 .2 Sensitivity to phylogenetic error

Since the coalescent model is fitted to phylogenies estimated separately, parameter esti-

mates are subject to error in estimated phylogenies. Estimation of phylogenetic branch

S-3



lengths can be imprecise. Sequence evolution includes large variation in mean substitution

rates across sites; parameters describing this variation must be estimated, reducing power

to estimate the mean mutation rate. Approximately half of sites are invariant, leaving

relatively few substitutions per branch on which to estimate chronological branch lengths.

A simulation experiment was carried out to asses the robustness of our estimation proce-

dure to realistic levels of phylogenetic error. The experiment is illustrated in figure SS14

and consisted of the following steps:

1. The true vector of parameters θ were selected. We used β1 = .5 and βi = .1 for

i > 1; δ = .1.

2. A coalescent tree G was simulated using the methods described in [2]. This method

simulates a gene genealogy that is consistent with a given timeseries of disease

prevalence, transmissions, and stage-transitions. Code to conduct these simulations

are available at http://code.google.com/p/colgem/.

3. A set of 409 sequences S was simulated on G using seq-gen [3]

(http://tree.bio.ed.ac.uk/software/seqgen/ ).

Sequences were 960 characters and generated with an HKY85 nucleotide substitu-

tion model. Parameters of this model were drawn from an ML phylogeny (phyml)

estimated from the Detroit sequences. To mimic the actual data collection, the fol-

lowing sample sizes were collected at 4 time points at 2 year intervals from present

to past: (307, 77, 19, 6). Sampling infected in stage i was in proportion to the

prevalence of stage i.

4. A phylogeny Ĝ was estimated from the simulated sequences using BEAST under the

similar conditions as those described above (5 independent chains, HKY model).
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5. An estimate of the parameters θ̂ was obtained using the coalescent likelihood de-

scribed in [2]. Model fitting was conducted using an iterated importance sampling

method described in [4].

Model fitting in the last step was done using Incremental Mixture Importance Sam-

pling (IMIS), a Bayesian adaptive importance sampling method which iteratively adapts

the sampling distribution to the posterior [4]. IMIS has previously been shown to work

well when fitting complex models of HIV transmission to timeseries [5]. IMIS begins by

sampling d× 1000 particles from the multivariate prior distribution of model parameters

where d is the number of parameters fitted. Subsequent generations of the importance

sampler generate d × 100 particles from a mixture of multivariate normal distributions

centered on the particle with the highest importance weight in the previous generation.

The process terminates when the proposal distribution is close to uniform. The posterior

was approximated by sampling 3000 particles from the final generation.

In order to improve computational efficiency of this method, the priors were modeled

with a mixture of multivariate normal distributions which were pre-adapted to the log

likeihood L(T ). This prevented the sampling of any particles with IMIS which would

have vanishingly small likelihood. This precaution was taken because calculation of the

coalescent log likelihood L(G) is computationally expensive. The ODE model in Text S1

was fitted 2700 times by maximizing L(T ) from a random starting condition (uniformly

distributed). Maximization used the Nelder-Mead method (optim in R [6]). Each of 2700

parameter estimates based on likelihood maximization was used as the basis for a prior

distribution, which was modeled as a mixture of multivariate normal distributions (mclust

in R [7]). Uniform priors were used for transmission parameters βi.

Figure SS14 shows estimated (Ĝ) versus true (G) external branch lengths. BEAST

does a good job of estimating the relative length of branches in G, but in some replicates,
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the mean rate was misspecified, causing branch lengths to be systematically over- or

under-estimated (results not shown). In these instances, we add a calibration step to

the coalescent likelihood: Prior to calculating the likelihood, branch lengths are rescaled

so that TMRCA predicted by the coalescent model coincides with the TMRCA in the

phylogeny. The set of ancestor equations [8] describing the coalescent process in the

epidemiological model were solved, which provided a prediction for the number of lineages

through time from the present to the beginning of the epidemic. Each posterior tree was

rescaled to match the time at which there were 50 lineages in the coalescent model.

Figure SS15 shows the results of three model fits to different trees estimated with

BEAST. The parameters β1 and β25 are shown, which respectively describe the contribu-

tion of early chronic infection and late chronic infection to total transmissions. In all cases

the 95% confidence intervals covers the median value estimated from the true simulated

coalescent tree; and, the estimates are close to the parameter values used to generate the

coalescent tree. This demonstrates that it is possible to distinguish transmission rates

during EHI from early chronic infection and from late chronic infection.

S2 .3 Sensitivity to violation of coalescent model assumptions

The coalescent model used to generate the results in the main text was based on the

assumption that the time of an internal node in an HIV phylogeny corresponds to the

time of a transmission event. In reality, a population of virus with a large diversity of

unique haplotypes circulates within hosts, and the variant which is transmitted may differ

substantially from the predominant variants within a host. The TMRCA estimated in

a phylogeny may not correspond exactly to the time of transmission, but rather to the

TMRCA for a sampled variant and a transmitted variant.

We did a simulation experiment with the following aims:
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• Establish a plausible distribution of intra-host coalescent times.

• Assess the amount of bias that is likely to occur in our fitted models if nodes in the

tree correspond to intra-host coalescent times rather than transmission events.

The simulation experiment protocol is as follows:

1. Distribution of intra-host coalescent times. We used phylogenies estimated

in [9] for nine patients described in [10] (subsequently referred to as the Shankarappa

data). In [10], nine patients with known seroconversion dates were followed and

virus was sampled at regular intervals. Sequencing of env was done using the SGA

method. In [9], relaxed clock phylogenies were estimated using the known sample

dates, yeilding branch lengths in units of calendar time. For each patient, and for

each time the patient was sampled, we calculated TMRCA for all pairs of sequences

sampled at that time.

2. We carried out a discrete-event individual-based simulation of the HIV model as de-

scribed in section S2 .1 with the following modifications. Following a transmission

event or a sampling event, there are two daughter lineages i and j and an ancestral

node α. We perturb the time of node α backwards in time by ∆t, which is drawn

from the empirical distribution of intra-host coalescent times calculated in step 1.

This distribution also depends on how long the transmitting node has been infected.

Specifically, we find the time-to-seroconversion and corresponding coalescent times

in the Shankarappa dataset that most closely matches how long the simulated in-

dividual has been infected; then we draw a random intra-host coalescent time at

random from the set of coalescent times in that sample.

3. A random sample of 437 individuals is taken at times which match those of the real
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dataset described in the main text. The states of these sampled individuals are also

chosen to match the empirical data.

4. We calculate the coalescent likelihood (see Text S2) over a range of βc and δ param-

eters. Parameters controlling incidence are fixed at the MLE since those parameters

are mostly determined by the surveillance timeseries T , and βc and δ are only esti-

mated from the genetic data.

Figure S S16 shows the distribution of intra-host coalescence times for isochronously

sampled sequences. Figure S S16 also shows how this distribution depends on the time

since seroconversion that samples are taken. There is an almost linear increase in the

median TMRCA as a function of time since seroconversion. Median TMRCA is about

35% of time to seroconversion, however the distribution is highly bi-model, with many

small TMRCAs and a few deep branches in the tree generate large TMRCAs.

If we compare the simulated tree in this experiment with the one generated in sec-

tion S2 .1 (based on node time = transmission time), we see that there is not a very large

difference in branch lengths. The median branch length in this simulated tree is 1338

days versus 1224 days in the other tree– a bit longer as would be expected since node

heights are perturbed backwards in time. However a KS test does not show a significant

difference in branch lengths of the two trees (p=43%).

Figure S17 shows the likelihood surface computed from a mesh of βc and δ parameters.

These parameters describe the relative infectiousness of chronic infections and diagnosed

individuals. The maximum likelihood occurs close to the true parameters values.

It may seem surprising that perturbing node heights by the distribution in figure S16

does not have a more drastic impact on the likelihood surface. This occurs for a couple

reasons. A large proportion of transmissions are from those who have not been infected
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very long, and consequently the absolute difference in the time of transmission and intra-

host coalescent time is not very great. Because of this, the median change in branch

lengths in the simulated tree is only 78 days and the mean is 300 days. On the other

hand, large changes in branch lengths occurs for people who transmit after being infected

for a long time, and those individuals are likely to be connected to the tree by long branch

lengths anyways.

S3 Dual infection

This section provides a simple approximation to the bias in coalescence rates that may

occur from neglecting the effects of dual-infection (including co-infection and super-

infection) [11].

Consider a transmission event from a donor A to a recipient B. With probability q,

A is dual-infected. The abundance of the dual-infecting strain i in A is p and 1 − p for

the strain j which initiated infection in A. Given that A harbors virus that is ancestral to

the sample, we will make the approximation that the strain i is ancestral with probability

p and j is ancestral with probability 1 − p. This is a conservative approach, since there

is the possibility that both i and j are ancestral. Upon transmission from A to B, the

probability of a coalescent event is

c = (1− q) + q(p2 + (1− p)2). (S1)

Supposing prevalence of dual-infection among transmitting hosts is q = 10% and abun-

dance of strain i is p = 25%, we have c = 96.25% (the probability is c = 1 in the absence

of dual infection). When fitting the coalescent model, the coalescent probability is less

than anticipated, so the estimated incidence would be biased downwards to compensate.
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In this case, incidence would be biased downwards by about 1− c = 3.75%.

It is also important to consider that even if the transmission A→ B does not result in

a coalescent (with probability 1−c), the coalescent event will eventually happen, and will

probably coincide with the time that A became dual-infected. Dual infection therefore

has the effect of delaying time to coalescence. If this delay in coalescent times is not great,

estimated incidence will probably have a bias much less than 1− c.

S4 CD4 and model validation

A simple least squares model of mean CD4 count was used to validate the MLE incidence,

prevalence, and diagnoses from each stage of infection. Denote the MLE number of

diagnoses from stage k in year i as Xik. The matrix X has dimensions T × 3 where T is

the number of years for which we have aggregated CD4 counts and the stage of infection

is EHI, chronic, or AIDS. The estimated mean CD4 count for each stage is encoded in

the vector a = (a0, a1, a2). The estimated mean CD4 count for new diagnoses over time is

given by the product Ŷ = X · â>. The actual mean CD4 count at each time step is given

by the column vector Y . We have estimated the vector â which minimizes the weighted

residual sum of squares

T∑
i=1

(niYi − niŶi)
2 =

∑
i=1

n2
i (Yi −X · â>)2,

where ni is the number of CD4 counts measured in timestep i. The estimated mean CD4

Ŷ is shown in figure 3B in the main text and the vector â is shown in the inset.
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S5 Simulated trees

To give greater intuition for why variation in transmission rates is identifiable from genetic

data, we have simulated gene trees under scenarios where

• All infected individuals transmit at the same (time-dependent) rate (figure S18).

• EHI transmit at a rate in excess of chronic infections as described by the MLE fit

of the model described in the main text (figure S18).

We also show the HIV phylogeny for comparison (figure S18). Trees were simulated using

the methods described in [2] and available at http://code.google.com/p/colgem/. The

times and states of patients in the simulated trees were chosen to match the real data.

As mentioned in the main text:

There is substantial molecular epidemiological evidence that variation in trans-

mission rates over the course of infection influences the genetic diversity of

HIV [12–15]. For example, viral sequences isolated from patients who were

recently infected tend to be phylogenetically clustered (more closely related

to one another than expected by chance). Simple models of HIV transmission

have been shown to reproduce these phylogenetic patterns [16], suggesting

that the transmission rate from EHI could be identifiable from genetic data.

In addition to the results presented in [16], these simulations give a graphical representa-

tion of how EHI transmission influences HIV phylogenetic structure.
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