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Modifications to the Empirical Bayes method 
 

As mentioned in the main manuscript, our work incorporated the exploration of 

several variations of the empirical Bayes method. We first adapted the method by simply 

altering the minimum-BIC estimated basis function of the natural cubic spline so that the 

boundary knots were no longer designated to be the most extreme z-statistics. Instead, the 

lower boundary knot is defined as the 10th z-statistic when the z-statistics lie in increasing 

order while the upper boundary knot is the 10th z-statistic when the z-statistics have been 

arranged in decreasing order. With z-statistics labelled in increasing order such that z1 < z2 < 

··· < zN , this constraint ensures that the estimated log p(z) is linear beyond these boundary 

knots, i.e. below z10 and above zN-10. 

Following this, together with the above modification, the exclusion of the utilization 

of BIC for model selection purposes was considered which limited the number of knots in the 

spline. We reverted back to abiding by Efron’s original specification of setting the degrees of 

freedom to 7 (1). The motivation for this choice stemmed from evaluating the performance of 

the empirical Bayes method with real data sets in which it was seen that the BIC approach 

generally selected a large number of basis functions, resulting in severe overfitting. The 

reason for this being perhaps due to these model selection criteria not accounting for the 

presence of strong linkage disequilibrium in real data sets.  

This observation was also responsible for the investigation of models that enforced 

additional constraints on the shape of the estimated log density function. We assessed a 

variation of the empirical Bayes method in which the gam function in the R package mgcv 

(2) was employed. The gam function fits a generalized additive model (GAM), with 

smoothness estimation integrated in the fitting process. The smoothing parameters are 

selected by means of generalized cross-validation (GCV). Two uses of this function were 

investigated, one in which the distribution family was specified as poisson and the other in 

which the identification of the family as negative binomial took place. The negative binomial 

is considered to be the more realistic choice here as it accounts for the overdispersion that is 

typically found in this form of count data.  

In addition, the scam function in the R package scam (3) was used to apply two shape 

constrained additive models (SCAMs) to the dataset at hand. This action imposes the 

restriction that only monotone increasing smooths can be attained for z-statistics greater than 

or equal to zero. Alternatively, for negative z-statistics, it results in smooths which are 

monotone decreasing. 
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Simulation details 
 

Quantitative trait with a correlation structure imposed  
 

The following steps were executed in order to obtain an estimated effect size, 𝛽̂𝑖 and 

corresponding standard error, se(𝛽̂𝑖) for SNP i, i = 1, …, N, for a quantitative trait in which a 

simple correlation structure has been imposed on the set of SNPs and the true effect sizes 

follow a normal distribution. N is the total number of SNPs, which has been fixed at N = 

1,000,000 for this simulation study. 

• A value is provided for π, the proportion of the total SNPs which are truly associated 

with the trait in question. This determines the number of effect SNPs K = π·N, 1 ≤ K ≤ 

N, forming a polygenic background.  

• A minor allele frequency is attained for SNP i using the uniform distribution mafi ~ 

U[0.01, 0.5].  

• Let us assume that the true effect sizes are b = b1, …, bN. We then let X be an n×N 

matrix of genotypes, assumed to be mean centred, that is for each column i: ∑j Xj,i = 0. 

Recall that n represents the sample size or total number of individuals. We assume 

that genotypes X affects the n×1 response matrix Y through the following linear 

model: 

 𝒀 = 𝑿𝒃+ 𝜀 (S1) 

where ε is a vector of independent zero mean normally distributed errors, i.e. it is 

assumed that var(ε) = σ2I where I denotes the n×n identity matrix. Now, let D = 

Diag(d1, ..., dN) where di = ∑j X
2

j,i . Using E(X2
i) = ∑j X

2
j,i /n, an approximation via the 

Law of Large Numbers, and the identity var(Xi) = E(X2
i) - (E(Xi))

2, we have:  

 𝑑𝑖 = 𝑛 ∙ var(𝑋𝑖) = 𝑛 ∙ 2 ∙ maf𝑖(1 − maf𝑖) (S2) 

as each column of genotypes is assumed to be mean centred, E(Xi) = 0 for each i and 

the variance of each SNP i, var(Xi), is assumed to take the form var(Xi) = 2·mafi(1-

mafi). 

With the above definition for D, the regression coefficients, 𝛽̂1, … , 𝛽̂𝑁 from the 

marginal regression of Y on each SNP Xi can be computed via the following matrix 

equation, in which 𝛽̂ = [𝛽̂1  𝛽̂2  ⋯ 𝛽̂𝑁]
𝑇
: 

 𝛽̂ = 𝑫−1𝑿𝑻𝒀 . (S3) 

Conditionally on the genotype matrix X, these estimated regression coefficients have 

variance-covariance matrix: 

  
cov(𝛽̂) =  𝑫−1𝑿𝑻𝑿𝑫−1𝜎2 = 𝑫−

1
2𝑫−

1
2𝑿𝑻𝑿𝑫−

1
2𝑫−

1
2𝜎2  ≈  𝑫−

1
2𝑹𝑫−

1
2𝜎2 (S4) 

where R is the N×N LD matrix of inter-genotype correlations, which should 

approximately equal the empirical correlation matrix D-½XTX D-½. Letting SE be the 

N×N diagonal matrix with element i equal to se(𝛽̂𝑖) =  𝜎/√∑ 𝑋𝑗,𝑖
2𝑛

𝑗=1 , the final 

expression could instead be written as: cov(𝛽̂) = (𝑺𝑬)−
1

2𝑹(𝑺𝑬)−
1

2. 
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Finally, these estimated associations are not necessarily unbiased for the true causal 

effects b1, …, bN. Instead they are unbiased for:  

 𝐸(𝛽̂) =  𝑫−1𝑿𝑻𝐸(𝒀) =  𝑫−1𝑿𝑻𝐸(𝑿𝒃 + 𝜀) =  𝑫−1𝑿𝑻𝑿𝒃 

=  𝑫−
1
2𝑫−

1
2𝑿𝑻𝑿𝑫−

1
2𝑫

1
2𝒃 ≈   𝑫−

1
2𝑹𝑫

1
2𝒃  

(S5) 

Multivariate normality of 𝛽̂ is inherited from the assumption that 𝜀 is normally 

distributed. In summary, conditional on the centred genotype matrix X:  

 
𝛽 ̂~ 𝑁 (𝑫−

1
2𝑹𝑫

1
2𝒃,𝑫−

1
2𝑹𝑫−

1
2𝜎2) (S6) 

We note that illustrations of derivations similar to the above can also be seen in 

existing literature, for example in Lloyd-Jones et al. (5). 

• Assuming that the true effect sizes, bi, i = 1, …, K, of associated SNPs follow a 

Gaussian distribution with mean 0, bi is then sampled for SNP i, i = 1, …, K, from the 

distribution bi ~ N(0, [2mafi(1- mafi)]). Non-effect SNP i, i = K+1, …, N, is simply 

assigned the null true effect size, bi = 0. 

• Defining the heritability h2 as the proportion of phenotypic variation, var(Y), that is 

explained by all SNPs, var(Y) can be computed as 

 
var(𝑌) =  

∑ 2maf𝑖(1 −maf𝑖) ∙ 𝑏𝑖
2𝐾

𝑖=1

ℎ2
 (S7) 

  

and following this, the true effect sizes are scaled giving 𝑏𝑖 = 
𝑏𝑖

√var(𝑌)
 for i = 1, ..., N. 

This scaling provides a phenotype with variance 1. In order to briefly illustrate why 

this is the case, let us consider re-defining the unscaled phenotype as Y* and the 

unscaled coefficients as bi*. Then, the scaled effect sizes are defined as 𝑏𝑖 = 
𝑏𝑖
∗

√var(𝑌∗)
 

and the scaled phenotype becomes 𝑌 =  
𝑌∗

√var(𝑌∗)
 and is defined by the same equation 

as before but with scaled coefficients, 𝑏𝑖. Using Eq (S7) to provide an expression for 

the variance of the unscaled phenotype, var(Y*), in which we merely change Y to Y* 

and bi 
2 to (bi*)2, it is clear to see that the variance of the scaled phenotype, var(Y), 

would be equal to 1.  

• Next, using the R function sample, K random positions between 1 and N are chosen 

for the effect SNPs and the vectors containing the values of true effect size, bi and 

minor allele frequency, mafi are adjusted accordingly.  

• In order to reduce computation time, it is assumed that the same linkage 

disequilibrium structure exists in independent blocks of 100 SNPs. Therefore, for 

each block of 100 SNPs, the estimated effect sizes, 𝛽̂𝑖 are simulated using Eq (S6). As 

we have already scaled bi to ensure the phenotype has variance 1, we have σ2 = 1. The 

matrix D is a diagonal 100 × 100 matrix. Thus, using Eq (S2), D-1/2 is a similar 

diagonal matrix with 𝑑𝑖
−1/2

=
1

√𝑛∙2∙maf𝑖(1−maf𝑖)
 and D1/2 has diagonal entries 𝑑𝑖

1/2
= 

√𝑛 ∙ 2 ∙maf𝑖(1 −maf𝑖). The challenge here is to choose a suitable matrix for R, the 

100 × 100 LD matrix of inter-genotype correlations. For simplicity, we have chosen R 

to be of the following format:  
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𝑹 = 

(

 
 

1 𝜌 𝜌2 𝜌3 ⋯ 𝜌99

𝜌 1 𝜌 𝜌2 ⋯ 𝜌98

𝜌2 𝜌 1 𝜌 ⋯ 𝜌97

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
𝜌99 𝜌98 𝜌97 𝜌96 ⋯ 1 )

 
 
  

 

(S8) 

The task is now to choose a suitable value for ρ. In Bosch et al. (6), it can be seen in 

Figure 1a that the average r2 at a distance of 5,000 bases is just over 0.4 in Europeans. 

Using our UKBB data set, we computed the median distance between SNPs and 

obtained a value of 189 bases. This would suggest that there exist an average of 

approximately 26 SNPs per 5,000 bases and thus, a rough estimate of an appropriate 

value for ρ may be computed as follows:  

 𝜌26 ≈ √0.4  ≈ 0.63245 →  𝜌 ≈ 0.9825. (S9) 

 

Within each block of 100 SNPs, we then simulated values for 𝐸(𝛽̂), as defined by Eq 

(S5), and 𝛽̂. We obtained 𝛽̂ using the R function rnorm with 𝛽̂ = 𝐸(𝛽̂) + 𝑹
1

2𝑫−
1

2 ∙

rnorm(100). The standard errors for each SNP, se(𝛽̂𝑖) were easily obtained from the 

diagonal entries of D-½.  

• The above process thus provided values for 𝐸(𝛽̂𝑖), 𝛽̂𝑖 and se(𝛽̂𝑖) for each SNP i = 1, 

..., N, in which the same LD structure described by the simple matrix R has been 

imposed for each independent block of 100 SNPs. 

 

Quantitative trait with independence assumed 
 

Similar steps were followed in order to obtain an estimated effect size, 𝛽̂𝑖 and 

corresponding standard error, se(𝛽̂𝑖) for SNP i, i = 1, ..., N, in which a quantitative trait was 

considered, it was assumed that SNPs were independent and effect sizes follow a normal 

distribution.  

1) A polygenic background of K = π·N, 1 ≤ K ≤ N, effect SNPs is formed, in which π is 

the proportion of the total SNPs which are truly associated with the trait in question.  

2) A minor allele frequency is attained for SNP i using the uniform distribution mafi ~ 

U[0.01, 0.5]. 

3) Assuming that the true effect sizes, βi of associated SNPs follow a Gaussian 

distribution with mean 0, βi is sampled for SNP i, i = 1, ..., K, from the distribution βi 

~ ~ N(0, [2mafi(1- mafi)]). Non-effect SNP i, i = K+1, ..., N, is simply assigned the 

null true effect size, βi = 0. 

4) Defining the heritability h2 as the proportion of phenotypic variation, var(Y), that is 

explained by all SNPs, var(Y) is computed in the same manner as Eq (S7) but with bi 

replaced by βi. Following this, the true effect sizes are scaled by dividing each by the 

square root of var(Y) in order to ensure a phenotype with variance 1.  

5) For a single SNP i, it is assumed that the underlying relationship between yj, a 

numerical measurement of the trait of individual j and xj ∈ {0,1,2}, the number of 

minor alleles that individual j has at SNP i, is described by the simple linear model 
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 𝑦𝑗 = 𝛽0 +  𝛽1𝑥𝑗 + 𝜀𝑗   (S10) 

for j = 1, ...., n. In this equation, β1 is recognised as the effect size of SNP i, i.e. β1 = 

βi. Using the properties of a linear model, we obtain 

 

se(𝛽̂𝑖) =  √
1 − 2maf𝑖(1 −maf𝑖)  ∙  𝛽𝑖

2

(𝑛 − 2) ∙ 2maf𝑖(1 −maf𝑖)
 (S11) 

for each SNP i, i = 1, ..., N.  

6) Finally, assuming that the effect size of each SNP follows a Gaussian distribution 

with mean βi and standard deviation se(𝛽̂𝑖), an estimated effect size, 𝛽̂𝑖 is simulated 

for each SNP i, i = 1, ..., N, i.e. 𝛽̂𝑖~ 𝑁 (𝛽𝑖,   se(𝛽̂𝑖)). 

For a bimodal distribution of effect sizes, summary statistics are simulated in the 

exact same manner but with step 3) above replaced by:  

3) It is assumed that the true effect sizes, βi of half of the associated SNPs follow a 

Gaussian distribution with mean 2.5 while the true effect sizes, βi of the other half 

follow a Gaussian distribution with mean 0. Thus, βi is sampled for SNP i, i = 1, ..., 

K/2, from the distribution βi ~ ~ N(2.5, [2mafi(1- mafi)]) and for SNP i, i = K/2 + 1, 

..., K, βi is sampled from the distribution βi ~ ~ N(0, [2mafi(1- mafi)]). As above, non-

effect SNP i, i = K+1, ..., N, is assigned the null true effect size, βi = 0.   

Similarly, for a skewed distribution of effect sizes, step 3) is altered and takes the 

form of:  

3) It is assumed that the true effect sizes, βi of 10% of the associated SNPs follow a 

negative exponential distribution with rate ([2mafi(1- mafi)])
-1/2  while the true effect 

sizes, βi of the other 90% follow an exponential distribution with the same rate. Thus, 

βi is sampled for SNP i, i = 1, ..., K/10, from the distribution 𝛽𝑖 ~ −

Exp(
1

√2maf𝑖(1−maf𝑖)
) and for SNP i, i = K/10 + 1, ..., K, βi is sampled from the 

distribution 𝛽𝑖 ~ Exp(
1

√2maf𝑖(1−maf𝑖)
). As above, non-effect SNP i, i = K+1, ..., N, is 

assigned the null true effect size, βi = 0. 

 

Binary trait with independence assumed  
 

Maintaining a normal effect size distribution and a set of independent SNPs, the 

following steps were executed in order to obtain an estimated effect size, 𝛽̂𝑖 and 

corresponding standard error, se(𝛽̂𝑖) for SNP i, i = 1, ..., N, for a binary trait with disease 

prevalence of 0.1.  

1) A polygenic background of K = π·N, 1 ≤ K ≤ N, effect SNPs is formed, in which π is 

the proportion of the total SNPs which are truly associated with the trait in question.  

2) A minor allele frequency is attained for SNP i using the uniform distribution mafi ~ 

U[0.01, 0.5]. 

3) Assuming that the true effect sizes, βi of associated SNPs follow a Gaussian 

distribution with mean 0, βi is sampled for SNP i, i = 1, ..., K, from the distribution βi 
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~ ~ N(0, [2mafi(1- mafi)]). Non-effect SNP i, i = K+1, ..., N, is simply assigned the 

null true effect size, βi = 0. 

4) As demonstrated by Yi and Zhi (7), using the latent-data formulation of the logistic 

regression, the proportion of the latent-data variance explained by the variants, i.e. the 

liability heritability, can be computed as: 

 
ℎ2 = 

∑ 2maf𝑖(1 −maf𝑖)  ∙  𝛽𝑖
2𝑘

𝑖=1

1.62 + ∑ 2maf𝑖(1 −maf𝑖)  ∙  𝛽𝑖
2𝑘

𝑖=1

 (S12) 

This provides an expression for the heritability h2 of the binary trait and thus, the true 

effect sizes are re-scaled giving 

 

𝛽𝑖 =  𝛽𝑖 ∙ √
1.62ℎ2

(1 − ℎ2)∑ 2maf𝑖(1 −maf𝑖)  ∙  𝛽𝑖
2𝑘

𝑖=1  
  (S13) 

 for i = 1, ..., N. 

5) For a single SNP i, it is assumed that the underlying relationship between yj, a 

numerical measurement of the trait of individual j and xj ∈ {0,1,2}, the number of 

minor alleles that individual j has at SNP i, is described by the logistic model:  

 logit(Ρ(𝑦𝑗 = 1|𝑥𝑗)) =  𝛽0 + 𝛽1𝑥𝑗 + 𝜀𝑗  (S14) 

for j = 1, ..., n. In this equation, β1 is recognised as the effect size of SNP i, i.e. β1 = βi. 

For SNP i, as we have simulated a value for both its minor allele frequency mafi and 

true effect size βi = β1, we can obtain a corresponding value for β0 using the fact that 

we have chosen the disease prevalence to be 0.1, i.e. P(Y = 1) = 0.1. Therefore, as P(Y 

= 1) = ∑P(Y = 1 | X) P(X) and Ρ(𝑌 = 1|𝑋) =  
𝑒𝛽0+𝛽1𝑋

1+ 𝑒𝛽0+𝛽1𝑋
 , for SNP i, we have: 

     maf𝑖
2 ∙

𝑒𝛽0+2𝛽1

1+𝑒𝛽0+2𝛽1
+ 2maf𝑖(1 −maf𝑖) ∙

𝑒𝛽0+𝛽1

1+𝑒𝛽0+𝛽1
+ (1 −maf𝑖)

2 ∙
𝑒𝛽0

1+𝑒𝛽0
= 0.1  (S15) 

 

Solving this equation then provides a value for β0, given values for mafi and β1. Now, 

the aim is to obtain a value for se(𝛽̂𝑖) = se(𝛽̂1) for each SNP i. Firstly, let us denote 

the maximum likelihood estimated logistic regression coefficient vector, from 

regressing the n × 1 response vector Y on the n × 1 genotype vector X, as 𝜷̂ =  (
𝛽̂0
𝛽̂1
), 

which can be represented as:  

 𝜷̂ =  (𝑿𝑻𝑾̂𝑿)
−1
𝑿(𝒀 − 𝒑̂) 

 
(S16) 

Here,  

 

𝑾̂ =  (

𝑝̂1(1 − 𝑝̂1) 0 ⋯ 0
0 𝑝̂2(1 − 𝑝̂2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑝̂𝑛(1 − 𝑝̂𝑛)

)  (S17) 
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𝑝̂𝑗 = 

𝑒𝛽̂0+𝛽̂1𝑋𝑗

1 + 𝑒𝛽̂0+𝛽̂1𝑋𝑗
 (S18) 

and 

 𝒑̂ = (𝑝̂1, … , 𝑝̂𝑛)
𝑇 

 
(S19) 

It is well known that var(𝜷̂) ~ (𝑿𝑻𝑾̂𝑿)−1. This can be re-expressed as:  

 

𝑿𝑻𝑾̂𝑿 =

(

 
 
∑ 𝑝̂𝑗(1 − 𝑝̂𝑗)

𝑛

𝑗=1
∑ 𝑋𝑗𝑝̂𝑗(1 − 𝑝̂𝑗)

𝑛

𝑗=1

∑ 𝑋𝑗𝑝̂𝑗(1 − 𝑝̂𝑗)
𝑛

𝑗=1
∑ 𝑋𝑗

2𝑝̂𝑗(1 − 𝑝̂𝑗)
𝑛

𝑗=1 )

 
 
  

 ~ (𝑛) (
Ε(𝑃(1 − 𝑃)) Ε(𝐺𝑃(1 − 𝑃))

Ε(𝐺𝑃(1 − 𝑃)) Ε(𝐺2𝑃(1 − 𝑃))
) 

(S20) 

where 𝑃 is the random variable that takes value Ρ(𝑌 = 1|𝑋) =  
𝑒𝛽0+𝛽1𝑋

1+ 𝑒𝛽0+𝛽1𝑋
 for 

genotype X, and X is the binomial distribution for genotype assuming Hardy 

Weinberg Equilibrium. Therefore, using the above, we obtain the inverse of 𝑿𝑻𝑾̂𝑿. 

Taking the square root of the value in the second row and second column of this 

matrix provides se(𝛽̂1). This process is repeated for each SNP i, i = 1, ..., N. 

6) Finally, assuming that the effect size of each SNP follows a Gaussian distribution 

with mean βi and standard deviation se(𝛽̂𝑖), an estimated effect size, 𝛽̂𝑖 is simulated 

for each SNP i, i = 1, ..., N, i.e. 𝛽̂𝑖~ 𝑁 (𝛽𝑖,   se(𝛽̂𝑖)). 
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Evaluation of performance assuming independent SNPs 
 

Surprisingly, in this instance in which SNPs are assumed to be independent, with 

respect to the evaluation metric ‘change in RMSE of significant SNPs’ the simulations 

suggest that many of the investigated Winner’s Curse methods tend to break down, or no 

longer make improvements when the proportion of effect SNPs is 0.001. In these simulations, 

a replication approach, which selects significant SNPs using a discovery GWAS and then 

employs a replication GWAS of the same size to obtain unbiased association estimates for 

these SNPs, was also considered. This can be viewed as acting as a form of benchmark for 

the other methods. Both the empirical Bayes method and ‘EB-gam-nb’ perform very similar 

to this replication approach, as can be seen in S8 Fig. Under the assumption that SNPs are 

independent, this observation supports the use of these two methods to adjust for Winner’s 

Curse bias, particularly when a replication GWAS is not available. The consistency of the 

methods is what makes them stand out. Unlike the bootstrap, FIQT and other variations of the 

empirical Bayes method, applying ‘EB’ or ‘EB-gam-nb’ rarely results in an increase in the 

RMSE over all significant SNPs.  

It is surprising to see the empirical Bayes method which uses two shape constrained 

additive models (SCAMs) perform extremely poorly when the sample size is 300,000 and the 

proportion of effect SNPs 0.001. This method was seen to perform well with real data and 

when a correlation structure was imposed on simulated data. When the proportion of effect 

SNPs is 0.01, the proposed bootstrap method for summary statistics performs in a comparable 

manner to both empirical Bayes and the replication method. However, the bootstrap method 

ceases to perform as well at reducing the RMSE of association estimates of significant SNPs 

when the proportion of effect SNPs is reduced to 0.001. That said, it is still seen to perform 

competitively with respect to other currently published methods. Just as was observed in the 

simulations with linkage disequilibrium, described in the main manuscript, the conditional 

likelihood methods tend to perform poorly compared to the other methods. The average 

percentage improvement in estimated RMSE across all scenarios was 10% for ‘EB-gam-nb’ 

and 16.2% for ‘EB’, although this average metric was negative for some methods, such as the 

conditional likelihood based approaches, indicating increased inaccuracy from applying 

Winner’s Curse corrections. 

Imposing a threshold of 5 × 10-4, it is still the original empirical Bayes method which 

seems to be the best, as can be seen in S9 Fig. For the larger sample size of 300,000, it is 

worth noting that the other four variations of the empirical Bayes method do not seem to 

perform well compared to other methods, with a positive value for change in RMSE noted in 

some cases. When the proportion of effect SNPs is 0.001, ‘EB-gam-nb’ is not behaving as 

well as seen previously.  

In addition to the above, summary statistics were simulated for a quantitative trait in 

which the effect sizes followed bimodal or skewed distributions and for a binary trait with a 

normal effect size distribution. For these supplementary investigations, in order to reduce 

computational burden, the assumption of independent SNPs was maintained and our 

suggested variations of the empirical Bayes method were excluded from evaluation. The 

results from assessing the methods using estimated change in RMSE of significant SNPs can 

be seen in S10-S15 Figs. Focusing on the 5 × 10-8 threshold, very similar conclusions may be 
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deduced for the three different situations considered. Firstly, the extreme unreliability of the 

conditional likelihood methods is again evident. Out of the six methods evaluated, the 

empirical Bayes method is clearly the most consistent at reducing the RMSE of association 

estimates for significant SNPs. In S10, S12 and S14 Figs, it can be seen to perform in a 

similar manner to the method which obtains the estimated effect sizes of significant SNPs in 

the discovery GWAS from an independent replication GWAS with a similar number of 

samples. Its dominance over the other correction methods is most noticeable in the depiction 

of results corresponding to a quantitative trait in which the effect sizes of SNPs have a 

skewed distribution. Across all situations, both FIQT and the bootstrap method tend to 

behave poorly when the proportion of effect SNPs is 0.001 but show improved performances 

when this proportion is increased to 0.01. However, under the assumption of a skewed effect 

size distribution, this improvement by the two methods is no longer observed, often resulting 

in positive values for the estimated change in RMSE.  
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Derivation of the estimated MSE of significant SNPs  
 

In order to evaluate the Winner’s Curse correction methods using real data sets, we 

chose to compute the estimated MSE of Nsig significant SNPs with respect to each method 

and discovery GWAS. The following provides a derivation of the expression for this 

estimated MSE which is given in Eq (14) in the main manuscript.  

• The true empirical MSE over all significant SNPs is 
1

𝑁sig
∑ (𝛽̂disc,adj,𝑖 − 𝛽𝑖)

2𝑁sig
𝑖=1

, in 

which 𝛽̂disc,adj,𝑖 is the adjusted/corrected version of the estimated effect size for SNP i 

obtained in the discovery study and βi  is the true effect size of that SNP. 

Unfortunately, in contrast to the simulation study, the value of the true effect size for 

each SNP is unknown. However, a replication study has provided an independent 

estimated effect size for each SNP, 𝛽̂rep,𝑖. These estimated effect sizes, 𝛽̂rep,𝑖, are 

considered to be unbiased estimates of their corresponding true effect sizes, i.e. 

Ε[𝛽̂rep,𝑖] = 𝛽𝑖, i = 1, ..., Nsig.  

• Therefore, let us reconstruct the equation, 
1

𝑁sig
∑ (𝛽̂disc,adj,𝑖 − 𝛽̂rep,𝑖)

2𝑁sig
𝑖=1

, in order to 

obtain an expression that approximates the empirical MSE over all significant SNPs: 

 1

𝑁sig
∑ (𝛽̂disc,adj,𝑖 − 𝛽̂rep,𝑖)

2𝑁sig

𝑖=1
= 

1

𝑁sig
∑

 

[(𝛽̂disc,adj,𝑖 − 𝛽𝑖 + 𝛽𝑖 − 𝛽̂rep,𝑖)
2
]

 

𝑁sig

𝑖=1
  

=  
1

𝑁sig
∑

 

[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)
2
] 

𝑁sig

𝑖=1
 − 2

1

𝑁sig
∑

 
[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)(𝛽𝑖 − 𝛽̂rep,𝑖)] 

𝑁sig

𝑖=1

+
1

𝑁sig
∑

 

[(𝛽𝑖 − 𝛽̂rep,𝑖)
2
] 

𝑁sig

𝑖=1
 

(S21) 

 

The second term here is approximately 0 due to the fact that the discovery and 

replication estimates are independent and the replication estimate is considered to be 

unbiased, Ε[𝛽̂rep,𝑖] = 𝛽𝑖. This is illustrated below:  

1

𝑁sig
∑

 
[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)(𝛽𝑖 − 𝛽̂rep,𝑖)] 

𝑁sig

𝑖=1

≈ Ε [
1

𝑁sig
∑

 
[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)(𝛽𝑖 − 𝛽̂rep,𝑖)] 

𝑁sig

𝑖=1
]

=
1

𝑁sig
∑

 
Ε[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)(𝛽𝑖 − 𝛽̂rep,𝑖)] 

𝑁sig

𝑖=1
= 0 

(S22) 

 

since Ε[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)(𝛽𝑖 − 𝛽̂rep,𝑖)] = Ε(𝛽̂disc,adj,𝑖 − 𝛽𝑖)Ε(𝛽𝑖 − 𝛽̂rep,𝑖) = 0.  

In addition, the third term may be approximated as: 

1

𝑁sig
∑

 

[(𝛽𝑖 − 𝛽̂rep,𝑖)
2
]  

𝑁sig

𝑖=1
≈ 

1

𝑁sig
∑ Ε[(𝛽𝑖 − 𝛽̂rep,𝑖)

2
]

𝑁sig

𝑖=1
 ≈  

1

𝑁sig
∑ (se(𝛽̂rep,i)

̂ )
2𝑁sig

𝑖=1
 (S23) 

 

• Rearranging the final expression provides us with a metric, namely the estimated 

MSE over all significant SNPs, approximating the empirical MSE:  
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1

𝑁sig
∑

 

[(𝛽̂disc,adj,𝑖 − 𝛽𝑖)
2
] 

𝑁sig

𝑖=1

≈ 
1

𝑁sig
∑ (𝛽̂disc,adj,𝑖 − 𝛽̂rep,𝑖)

2𝑁sig

𝑖=1
− 

1

𝑁sig
∑ (se(𝛽̂rep,i)

̂ )
2𝑁sig

𝑖=1
 

(S24) 

Note that our estimated MSE, 
1

𝑁sig
∑ (𝛽̂disc,adj,𝑖 − 𝛽̂rep,𝑖)

2𝑁sig
𝑖=1

− 
1

𝑁sig
∑ (se(𝛽̂rep,i)

̂ )
2𝑁sig

𝑖=1
, 

and the true empirical MSE, 
1

𝑁sig
∑ (𝛽̂disc,adj,𝑖 − 𝛽𝑖)

2𝑁sig
𝑖=1

 both have the same expectation: 

1

𝑁sig
Ε [∑ (𝛽̂disc,adj,𝑖 − 𝛽𝑖)

2𝑁sig
𝑖=1

]. 
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Evaluation of performance using pruned real data sets 
 

Due to the issues mentioned in the main manuscript regarding the performance of 

methods in the presence of linkage disequilibrium in real data sets, we also explored applying 

the methods to data sets of pruned SNPs. PLINK 2.0 (4) was used to prune the original set of 

SNPs. The command ‘--indep-pairwise 50 5 0.5’ was employed for pruning. This meant that 

pruning occurred by first calculating LD between each pair of SNPs in a window of 50 SNPs. 

If an LD value greater than 0.5 was observed, then one SNP out of this pair was removed. 

The window was shifted 5 SNPs forward and the process was repeated. 1,589,295 SNPs 

remained after this procedure, a data set about 20% of the size of the original.  

Due to this great reduction in the total number of SNPs in each of the six data sets, the 

number of significant SNPs that passed the two thresholds, 5 × 10-8 and 5 × 10-4, naturally 

also decreased for each data set. For example, at the significance threshold 5 × 10-8, the 

number of significant SNPs for the first BMI data set fell from 6,908 to 439 while for the first 

height data set, 5859 significant SNPs were obtained in comparison to the original 70,020. 

With respect to T2D, only two and four SNPs were deemed significant for the first and 

second data set, respectively. Despite these observations, the proportions of significant SNPs 

with smaller replication estimates and the proportions of significant SNPs that were 

significantly overestimated remained at similar values for the most part.   

Similar to the approach described in the main manuscript, the correction methods 

were applied and subsequently evaluated using the estimated MSE over all significant SNPs. 

S15 and S16 Tables, together with S21 and S22 Figs, illustrate the results obtained. Overall, 

these results are extremely similar to those which use the original unpruned set of SNPs. The 

most obvious difference is seen for the T2D datasets when a threshold of 5 × 10-8 is imposed. 

Most methods now have lower estimated MSE values than that of the naïve approach, which 

is encouraging. However, it must be noted that these calculations are based on a very small 

number of significant SNPs. At this 5 × 10-8 threshold, ‘EB’, ‘EB-gam-nb’ and FIQT were 

the most reliable correction methods, producing an average improvement in estimated MSE 

of greater than 50% across the six data sets. With respect to the 5 × 10-4 significance 

threshold, all correction methods, apart from the conditional likelihood methods, resulted in 

an average improvement in estimated MSE of between 71% and 77%. ‘EB-scam’ provided 

the greatest average improvement of approximately 77%. In conclusion, evaluating the 

methods using a pruned set of SNPs failed to produce any major additional insights for our 

study. That said, it perhaps reinforced the concept that the performance of Winner’s Curse 

correction methods should not be considered reliable if there is a very low number of 

independent signals in the set of SNPs passing the chosen significance threshold.  
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Number of independent signals required  
 

 As detailed in the main manuscript, the evaluation of the Winner’s Curse correction 

methods using estimated MSE with a significance threshold of 5 × 10-8 and the T2D data sets 

highlighted the importance of ensuring that the set of significant SNPs contain enough 

independent signals before applying the methods. We note that this issue mainly pertains to 

methods that utilize the collective distribution of SNP effect sizes, either explicitly or 

implicitly, namely the empirical Bayes methods, the bootstrap method and FIQT. In this 

section, we describe our attempt at determining the number of independent signals required to 

ensure appropriate performance of these methods.  

 

 Using the data sets of BMI and height, we first computed the estimated MSE for each 

correction method at increased significance thresholds. S23 Fig illustrates the results obtained 

for the BMI data sets at thresholds 5 × 10-10, 5 × 10-12 and 5 × 10-14. The number of 

significant SNPs passing the specified threshold is noted in the figure. For the first BMI data 

set, the initial ‘breakdown’ of methods, i.e. methods starting to perform worse than the naïve 

approach of using no correction, seems to occur at 5 × 10-10 while for the second, a similar 

observation can be made at 5 × 10-12. These thresholds correspond to 3,333 and 2,745 

significant SNPs, respectively. Corresponding Manhattan plots, S25 and S26 Figs, have been 

produced using the R package qqman (8), to assist in deducing the number of independent 

signals contained in these two sets of significant SNPs. Note that the blue line in each 

Manhattan plot represents the mentioned significance threshold. In a similar manner, S24 Fig 

depicts the results of method evaluation using the height data sets at thresholds 5 × 10-32, 5 × 

10-34 and 5 × 10-36. Concentrating on the empirical Bayes methods ‘EB’, ‘EB-gam-nb’ and 

‘EB-scam’, the bootstrap method and FIQT, it seems that ‘breakdown’ begins to take place at 

5 × 10-32 for the first height data set and at 5 × 10-34 for the second. 3,459 SNPs have been 

deemed significant at this 5 × 10-32 threshold while at 5 × 10-34 in the other data set, there are 

3,358 significant SNPs. Manhattan plots for height can be viewed in S27 and S28 Figs. The 

four Manhattan plots suggest that these mentioned sets of significant SNPs are each 

comprised of approximately 30 independent signals.  

 

This observation provides us with some empirical evidence, at least with respect to 

UKBB data, regarding how many independent significant signals are required in order to 

guarantee confidence in method application. Therefore, we can state that given our 

experience described here with real data, we would anticipate that for modern high-density 

genotyping arrays like UKBB, one would need hundreds of significant SNPs, possibly close 

to 3500, originating from perhaps at least 30 separate genomic regions to apply the methods 

reliably. For older arrays, where there is less LD, or for LD-pruned arrays, 30 significant 

SNPs representing 30 significant independent signals would be potentially sufficient.  
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S23 Fig. Estimated MSE of significant SNPs at thresholds 5 × 10-10, 5 × 10-12 and 5 × 10-14 for 

each method and BMI data set. The estimated MSE obtained for the naïve approach is represented 

by the darker green bar as well as the dashed black line. The number of significant SNPs obtained for 

each data set, at the specified threshold, is included. 
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S24 Fig. Estimated MSE of significant SNPs at thresholds 5 × 10-32, 5 × 10-34 and 5 × 10-36 for 

each method and height data set. The estimated MSE obtained for the naïve approach is represented 

by the darker green bar as well as the dashed black line. The number of significant SNPs obtained for 

each data set, at the specified threshold, is included. 
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S25 Fig. Manhattan plot for the first BMI data set. The chromosome and position of each SNP 

with a p-value less than 0.05 (x-axis) is plotted against –log10 of its p-value (y-axis), for the first BMI 

data set. The red line represents the genome-wide significance threshold of 5 × 10-8, while the blue 

line represents a 5 × 10-10 threshold. 

 
 

S26 Fig. Manhattan plot for the second BMI data set. The chromosome and position of each SNP 

with a p-value less than 0.05 (x-axis) is plotted against –log10 of its p-value (y-axis), for the second 

BMI data set. The red line represents the genome-wide significance threshold of 5 × 10-8, while the 

blue line represents a 5 × 10-12 threshold. 
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S27 Fig. Manhattan plot for the first height data set. The chromosome and position of each SNP 

with a p-value less than 0.05 (x-axis) is plotted against –log10 of its p-value (y-axis), for the first 

height data set. The red line represents the genome-wide significance threshold of 5 × 10-8, while the 

blue line represents a 5 × 10-32 threshold. 

 

 

S28 Fig. Manhattan plot for the second height data set. The chromosome and position of each SNP 

with a p-value less than 0.05 (x-axis) is plotted against –log10 of its p-value (y-axis), for the first 

height data set. The red line represents the genome-wide significance threshold of 5 × 10-8, while the 

blue line represents a 5 × 10-34 threshold. 
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Performance of the conditional likelihood method for true effects 

near genome-wide significance threshold 
 

 In the simulation study discussed in the main manuscript, the conditional likelihood 

methods were seen to perform poorly, especially when the genome-wide significance 

threshold of 5 × 10-8 was used. In most instances, these methods resulted in an increase in 

RMSE in comparison to the RMSE obtained using the naïve approach of no correction. We 

hypothesized that in addition to an increase in variance, the reason for this observation was 

due to the overcorrection of estimated effect sizes, especially those close to the significance 

threshold. We chose to explore this concept further as follows.  

 

 Firstly, we considered a set of 81 equally spaced true standardized effect sizes, µ 

between 4 and 8. For each of these true effect sizes, we simulated 10,000 corresponding 

estimated effect sizes, z from the distribution z ~ N(µ, 1). Selection was imposed on these 

estimated effect sizes by only keeping those that were considered significant at the genome-

wide significance threshold of 5 × 10-8, i.e. had p-values less than 5 × 10-8. The first 

conditional likelihood method, denoted by ‘CL1’ in the manuscript, was applied to the 

remaining estimated effect sizes, z, producing the conditional maximum likelihood estimator, 

𝜇 for each z. The conditional bias, standard error and RMSE for ‘CL1’ at each value of µ was 

then estimated as follows, in which Nsig is the number of significant estimated effect sizes, z 

for that value of µ:  

biaŝ (𝜇) =
1

𝑁sig
∑

 
[𝜇̃𝑖 − 𝜇] 

𝑁sig

𝑖=1
 

sê(𝜇) =√
1

𝑁sig
∑

 

(𝜇̃𝑖 − 𝜇̃𝑖 )
2 

𝑁sig

𝑖=1
 

RMSÊ(𝜇) = √
1

𝑁sig
∑

 
(𝜇̃𝑖 − 𝜇)

2 
𝑁sig

𝑖=1
 

(S25) 

The values obtained for conditional bias, standard error and RMSE are plotted against the 

true standardized effect sizes, µ in S29 Fig below, represented by black circles. In a similar 

manner, the conditional bias, standard error and RMSE were obtained with respect to the 

naïve approach using the above equations but in which 𝜇̃𝑖 is replaced with zi. These values are 

depicted with blue squares in S29 Fig.  

 

For true standardized effect sizes between 4 and 8, the conditional likelihood RMSE 

is clearly consistently greater than the naïve approach, as anticipated from our observations in 

the simulation study. However, the RMSE does decrease as the true standardized effect size 

increases and moves away from the significance threshold. The standard error can be seen to 

follows a similar pattern. In addition, even though the conditional likelihood bias is generally 

smaller than that of the naïve approach, overcorrection is evident and seems to be most severe 

for true standardized effect sizes less than the 5 × 10-8 threshold with bias values close to -1. 

S29 Fig thus demonstrates that overcorrection can also contribute to large RMSE values for 

the conditional likelihood method, especially when this RMSE is computed over many 

significant SNPs close to the significance threshold. 

 

Note that we are only able to perform an analysis such as the one described for the 

conditional likelihood methods as correction is performed to each SNP separately, 

independently of estimated associations of other SNPs.  
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S29 Fig. Conditional bias, standard error and RMSE, conditional on selection, for various true 

standardized effect sizes for the conditional likelihood method and the naïve approach. True 

standardized effect sizes, µ (x-axis) are plotted against conditional bias, standard error and RMSE (y-

axis), conditional on selection at the genome-wide significance threshold (5 × 10-8) in plots (A), (B) 

and (C), respectively. Values of bias, standard error and RMSE computed using the estimated effect 

sizes obtained after application of the conditional likelihood method are represented by black circles 

while the blue squares denote values calculated using the naïve estimated effect sizes. The red dotted 

line represents the genome-wide significance threshold of 5 × 10-8.  
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