Classification of non-coding variants with high pathogenic impact
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Design of the three models for negative control sampling 

When training machine learning frameworks, imbalance and unequal distributions in the training data are major issues, which have been minimally addressed in the past. The set size and genomic distribution of positive controls is unfortunately limited by data availability in the current state-of-the-art. A potential consequence is that models may largely learn to discriminate based on distance from the nearest gene, which is not particularly useful nor does it require machine learning to achieve. 
The Random model confronts random non-functional variants to the positive controls, and evaluates the baseline: a good model should not be specific to any subcategory of genomic regions, and should work genome-wide. At each training iteration, 880 negative and 880 positive controls are sampled randomly with replacement in a balanced set design. As there are 1,000 training iterations and the negative pool is very large (38 million), we estimate that ~880,000 negative variants are sampled in the training, with minimal resampling.
The Local model confronts the positive variants to closely-located non-functional variants, to ensure that the model does not simply discriminate based on genomic location (especially relative to gene distance), but is able to distinguish true functional variants from their immediate surroundings. Indeed, it is not expected that every base pair in regulatory elements has functional consequences when mutated. We chose to sample negative controls within 1kb, which is the size of an average non-coding regulatory element as determined from epigenomic information (e.g. histone modifications). We find that such closely-located variants are much harder to discriminate, as expected, because they frequently share functional features spanning more than 1kb. 
[bookmark: _GoBack]An evaluation of cross-performance (Fig A) indicated that each model performs poorly on the training dataset of the other. This shows that neither the Random nor the Local models generalize to the complete range of situations encountered in real settings. The Adjusted model however uses a composite set of negative controls (randomly and locally sampled), and achieves high performances on all training sets regardless of the genomic distribution of the variants (Fig A).



	Feature
	Description
	Group
	Distribution
	Reference

	Transition/Transversion
	Nature of the variants (0 for transitions, 1 for transversions ; indels are set to 2).
	Sequence properties

	Discrete
	This study

	CG dinucleotide
	CG dinucleotide locations.
	
	Binary
	This study

	CpG islands
	CpG islands from the UCSC.
	
	Binary 
	[bookmark: __Fieldmark__44_2281253091][bookmark: __Fieldmark__54_3451003990][1]

	PhyloP 100-way
	PhyloP score computed from 100 vertebrate genomes’ alignments
	Conservation
	Continuous
	[bookmark: __Fieldmark__55_2281253091][bookmark: __Fieldmark__65_3451003990][1,2]

	PhyloP 20-way
	PhyloP score computed from 20 primate genomes’ alignments
	
	Continuous
	[bookmark: __Fieldmark__65_2281253091][bookmark: __Fieldmark__75_3451003990][1,2]

	PhastCons 100-way
	PhastCons score computed from 100 vertebrate genomes’ alignments
	
	Continuous
	[bookmark: __Fieldmark__75_2281253091][bookmark: __Fieldmark__85_3451003990][1,3]

	PhastCons 20-way
	PhastCons score computed from 20 primate genomes’ alignments
	
	Continuous
	[bookmark: __Fieldmark__85_2281253091][bookmark: __Fieldmark__95_3451003990][1,3]

	CDTS
	Context-dependent tolerance score representing the tolerance to genetic variation, evaluated at the population level.
	
	Continuous
	[bookmark: __Fieldmark__95_2281253091][bookmark: __Fieldmark__103_3451003990][4]

	GERP score
	GERP score 
	
	Continuous
	[5]

	GERP element
	Regions identified as conserved element.
	
	Binary
	[bookmark: __Fieldmark__115_2281253091][bookmark: __Fieldmark__119_3451003990][5]

	DNase-sensitive cluster
	Score associated to DNaseI Hypersensitivity Clusters in 125 cell types from ENCODE.
	Biochemical evidence
	Continuous
	[bookmark: __Fieldmark__126_2281253091][bookmark: __Fieldmark__130_3451003990][6]

	Promoter
	Number of the considered state at given location across 98 cell types from Roadmap Epigenomics.
	
	Discrete
	[bookmark: __Fieldmark__136_2281253091][bookmark: __Fieldmark__138_3451003990][7]

	Transcribed
	
	
	Discrete
	[bookmark: __Fieldmark__145_2281253091][bookmark: __Fieldmark__145_3451003990][7]

	Enhancer
	
	
	Discrete
	[bookmark: __Fieldmark__154_2281253091][bookmark: __Fieldmark__152_3451003990][7]

	ZNF Genes & repeats
	
	
	Discrete
	[bookmark: __Fieldmark__163_2281253091][bookmark: __Fieldmark__159_3451003990][7]

	Heterochromatin
	
	
	Discrete
	[bookmark: __Fieldmark__172_2281253091][bookmark: __Fieldmark__166_3451003990][7]

	Repressed
	
	
	Discrete
	[bookmark: __Fieldmark__181_2281253091][bookmark: __Fieldmark__173_3451003990][7]

	Quiescent
	
	
	Continuous
	[bookmark: __Fieldmark__190_2281253091][bookmark: __Fieldmark__180_3451003990][7]

	H3K4me1 fold-change
	Median of Fold Change value per position for the considered histone mark across 98 cell types from Roadmap Epigenomics.
	
	Continuous
	[bookmark: __Fieldmark__200_2281253091][bookmark: __Fieldmark__188_3451003990][7]

	H3K4me3 fold-change
	
	
	Continuous
	[bookmark: __Fieldmark__209_2281253091][bookmark: __Fieldmark__195_3451003990][7]

	H3K27ac fold-change
	
	
	Continuous
	[bookmark: __Fieldmark__218_2281253091][bookmark: __Fieldmark__202_3451003990][7]

	TFBS count
	From predicted TFBS overlapped by a variant, two information are extracted : the number of predicted TFBS, and the maximum score of site prediction.

	
	Discrete
	[bookmark: __Fieldmark__228_2281253091][bookmark: __Fieldmark__210_3451003990][8]

	TFBS max score
	
	
	Continuous
	[bookmark: __Fieldmark__237_2281253091][bookmark: __Fieldmark__217_3451003990][8]

	Conserved TFBS count
	
	
	Discrete
	UCSC track

	Conserved TFBS max score
	
	
	Continuous
	UCSC track

	Clustered TFBS count
	
	
	Discrete
	UCSC track

	Clustered TFBS max score
	
	
	Continuous
	UCSC track

	PEGASUS score
	From predicted regulatory regions overlapped by a variant, two information are extracted : the score associated to the regulatory region, and the number of targets. When multiple regions from a dataset overlap, the maximum score is retrieved. 

GeneHancer provides with an additional score for the predictions of interactions, which is extracted as “max score targets”.
	Gene associations

	Continuous
	[bookmark: __Fieldmark__261_2281253091][bookmark: __Fieldmark__240_3451003990][9]

	PEGASUS target count
	
	
	Discrete
	[bookmark: __Fieldmark__270_2281253091][bookmark: __Fieldmark__247_3451003990][9]

	FANTOM5 max score
	
	
	Continuous
	[bookmark: __Fieldmark__279_2281253091][bookmark: __Fieldmark__254_3451003990][10]

	FANTOM5 target count
	
	
	Discrete
	[bookmark: __Fieldmark__288_2281253091][bookmark: __Fieldmark__261_3451003990][10]

	GeneHancer max score
	
	
	Continuous
	[bookmark: __Fieldmark__297_2281253091][bookmark: __Fieldmark__269_3451003990][11]

	GeneHancer target count
	
	
	Discrete
	[bookmark: __Fieldmark__306_2281253091][bookmark: __Fieldmark__277_3451003990][11]

	GeneHancer max score targets
	
	
	Continuous
	[bookmark: __Fieldmark__315_2281253091][bookmark: __Fieldmark__285_3451003990][11]

	FOCS_FANTOM5 max score
	
	
	Continuous
	[bookmark: __Fieldmark__324_2281253091][bookmark: __Fieldmark__292_3451003990][12]

	FOCS_FANTOM5 target count
	
	
	Discrete
	[bookmark: __Fieldmark__333_2281253091][bookmark: __Fieldmark__299_3451003990][12]

	FOCS_GroSeq max score
	
	
	Continuous
	[bookmark: __Fieldmark__342_2281253091][bookmark: __Fieldmark__307_3451003990][12]

	FOCS_GroSeq target count
	
	
	Discrete
	[bookmark: __Fieldmark__351_2281253091][bookmark: __Fieldmark__315_3451003990][12]

	FOCS_Roadmap max score
	
	
	Continuous
	[bookmark: __Fieldmark__360_2281253091][bookmark: __Fieldmark__323_3451003990][12]

	FOCS_Roadmap target count
	
	
	Discrete
	[bookmark: __Fieldmark__369_2281253091][bookmark: __Fieldmark__331_3451003990][12]

	Ratio shared targets
	At positions overlapped by regulatory regions of from multiple source, we divide the number of genes predicted as a target by more than 1 source, by the total number of target genes across sources.
	
	Continuous
	This study


Table A: Sources of functional annotations used by FINSURF

	Source
	Description
	Number of bases
	Reference

	GENCODE v29liftHg19
	Extracted 5’UTR and 3’UTR regions, as  well as proximal regulatory regions set as the 2,000bp before the first position of annotated genes (both coding and non-coding).
	128,404,642
	[bookmark: __Fieldmark__812_2281253091][bookmark: __Fieldmark__772_3451003990][13]

	PEGASUS
	Predicted regulatory regions identified from conserved non-coding elements.
	68,593,981
	[bookmark: __Fieldmark__822_2281253091][bookmark: __Fieldmark__780_3451003990][9]

	FANTOM5
	Robust enhancer-promoter associations based on correlation of expression levels measured by CAGE.
	8,444,398
	[bookmark: __Fieldmark__832_2281253091][bookmark: __Fieldmark__788_3451003990][10]

	GeneHancer
	Unified predicted regulatory regions from a set of 4 sources : Ensembl regulatory built, FANTOM5 permissive enhancers, VISTA enhancers, and ENCODE proximal and distal enhancers.
	312,286,188
	[bookmark: __Fieldmark__842_2281253091][bookmark: __Fieldmark__796_3451003990][11]

	FOCS FANTOM5
	Predictions through the FOCS pipeline of regulatory associations from FANTOM5 expressed regions.
	5,131,199
	[bookmark: __Fieldmark__852_2281253091][bookmark: __Fieldmark__804_3451003990][12]

	FOCS GroSeq
	[bookmark: __DdeLink__524_1354875959]Predictions through the FOCS pipeline of regulatory associations from global run-on sequencing datasets.
	21,636,242
	[bookmark: __Fieldmark__865_2281253091][bookmark: __Fieldmark__816_3451003990][12]

	FOCS Roadmap
	Predictions through the FOCS pipeline of regulatory associations from DHS datasets from Roadmap Epigenomics.
	13,401,492
	[bookmark: __Fieldmark__875_2281253091][bookmark: __Fieldmark__824_3451003990][12]



Table B: Sources of regulatory regions associated to putative target genes used by FINSURF

	Name
	Model
	Training scheme
	Evaluation
	Ref

	Genomiser
	Supervised classification with an ensemble of random forests.
	Manual curation of a set of functional variants (note : a large part overlaps with HGMD), against nearly fixed human-specific variants identified within the primate lineage, taken as negative controls.
	
	[bookmark: __Fieldmark__963_2281253091][bookmark: __Fieldmark__915_3451003990][14]

	NCBoost
	Supervised classification with gradient-boosting of decision trees (XGBoost).
	
	
	[bookmark: __Fieldmark__972_2281253091][bookmark: __Fieldmark__924_3451003990][15]

	FATHMM-MKL
	Supervised classification with a Support Vector Machine using a Multi-Kernel learning approach.
	Positive controls are taken from HGMD. Negative controls are taken from the 1,000 genome project : variants with mAF>1 %, at a maximum distance of 1kb of a positive control. 
	
	[bookmark: __Fieldmark__982_2281253091][bookmark: __Fieldmark__934_3451003990][16]

	Eigen
	Unsupervised learning
	
	
	[bookmark: __Fieldmark__991_2281253091][bookmark: __Fieldmark__941_3451003990][17]

	Linsight
	
	
	
	[bookmark: __Fieldmark__999_2281253091][bookmark: __Fieldmark__947_3451003990][18]

	FitCons
	Evaluation of sequence-constraint at base-level within different genomic regions identified from biochemical features.
	
	
	[bookmark: __Fieldmark__1008_2281253091][bookmark: __Fieldmark__954_3451003990][19]


	CADD
	Supervised classification with a Support Vector Machine using a linear kernel.
	
	
	[bookmark: __Fieldmark__1017_2281253091][bookmark: __Fieldmark__961_3451003990][20]


Table C: Variant scoring methods compared to FINSURF
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Fig A. Design and cross-performance evaluation of the random forests models trained with the three approaches for sampling negative control variants. As described in the methods, the Random sampling does not correct for the differences in proportions between positive and negative controls in the different genomic annotations, while the Adjusted model corrects for this. The cross-performance of the models is evaluated by comparison of the ROC and precision-recall curves, recalculated from the 10 fold cross validation step of each model (which correspond to the pairs of curves on the diagonal). A given column corresponds to the application of a model on the 10-fold subsets of variants obtained under the different samples methods (with filtering of overlapping variants between training and validation subsets, as described in the methods). Note that to allow the comparison of performances, a second undersampling of negative control variants was performed in the validation subset for the Random and Adjusted models, in order to match the observed proportion of 12.5% of positive controls in the Local sampling dataset. The area under the curves of the average curves is reported in the two tables for each combination of model and validation dataset.



[image: ]Fig B. Comparison of the cross-validation scheme for separating training and validation sets of variants. Separability plots include the Receiver Operating Curve  (ROC) and Precision Recall Curve (PRC) averaged over 10-fold cross-validation, as well as the density plot of positive and negative controls over the range of FINSURF predicted scores. a. Results from a 10-fold cross-validation where variants were separated taking into account their localisation within cytogenetic bands. Variants (whether negative or positive controls) within a certain cytogenetic band are randomly assigned to one of the 10 folds for the cross-validation, ensuring that information from their local genomic context will not leak from the training set to the validation set.   This approach is the one retained for all cross-validations experiments in our analyses. Note that these ROC and PRC are the one presented in the Fig A in S1 Text and Fig 2. b. Results from a 10-fold “Stratified” cross-validation, where only the imbalance of positive and negative variants was taken care of by the stratification procedure. The much better performance and cleaner separation between classes highlights data leakage from separating at random into train and validation sets variants that might share common genomic context.


[image: Macintosh HD:Users:hrc:ownCloud:FINSURF_paper:figures:supp_figures:002_FINSURF-full-CytobandMatch_genomiser_eval_model-comparison-plot.pdf]
































Fig C. Comparison between FINSURF (red lines) and eight other methods also designed to functionally interpret non-coding regulatory variants. a. Comparison of performances on the training dataset of FINSURF “Adjusted”. The subsets of variants generated during the 10-fold cross-validation were re-used, by scoring the positive and negative control variants with the other methods. At no time was FINSURF tested on variants used during training. Variants for which a score could not be computed by any one method (e.g. lack of required annotations) were discarded for all methods. The average performance curve of the 10-folds are reported. We note the high precision of the ReMM Genomiser model, which can be explained by the overlap between the training variants of this model and the HGMD variants used by FINSURF. b. Comparison of performances on the subset of 92 Genomiser variants, of which 30 are discarded due to missing scores by at least one method. Negative control variants were re-sampled following the Adjusted sampling procedure, and those found in the training dataset of the FINSURF model were removed. Note that the ROC curve is the one presented in the Fig 2d. 
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Fig D. Feature importance of the 41 features in the FINSURF Adjusted model. Features are listed on the x-axis and grouped in four categories: green for nucleotide sequence features, purple for evolutionary sequence conservation features, red for functional genomics features and blue for putative enhancer – promoter association features.

































[image: ]


Fig E. Analysis of the 878 positive control variants of the FINSURF model through their feature contribution profiles. Contributions to the prediction score were calculated for each variant, and k-means clustering was applied. a. Different number of clusters were explored, and the finale number K=7 was selected from the joint minimization of the inertia and maximization of the silhouette. b. Distribution of scores of variants per cluster, colored by the predicted class when applying the optimal threshold of 0.51. c. Average functional profile of the 7 clusters. These profiles highlight how feature contributions relate to the raw values of the features, as processed by the random forests. For each cluster, the raw values were normalized, and averaged from the variants within the cluster (colored bars). Reference values (dark grey bars) correspond to the average from the rest of the training dataset (i.e. positive controls in other clusters and negative controls). The color of the bars is based on the average contributions of the features in each cluster.

[image: ]

Fig F. Predicting highly pathogenic disease variant in genomic context. a. Box-plots representation and individual FINSURF score values for 92 known pathogenic variants from the Genomiser dataset but absent from the FINSURF training set. While 43 variants are very close (≤ 1kb) to one of the latter (left), the remaining 49 are sufficiently far (> 1kb) to be considered to overlap independent annotations.  Of these a subset of 38 variants are also predicted to reside in a regulatory element targeting a gene that is not in the set of targets of variants in the FINSURF training set (“not seen”). Since the two subsets (N=11 and N=38) show largely overlapping score distributions, they were all used for classification performance in a genomic context.   b. Classification performance comparisons between FINSURF and eight other methods on the set of 49 positive variants described in (a): left, ROC; middle, PRC; right, scatterplot of ROC versus PRC AUC values for graphs shown on the left and middle panels. We dropped the 3 variants from the MODY11 and PRS diseases, as they were located in regulatory regions not targeting the reported disease gene. Note that only 37 variants were eventually scored by all 9 methods and could be used for the analysis. The negative set used here were the 875 Platinum variants also residing in the same predicted regulatory regions as the 37 positives. c. Table reporting the number of OMIM diseases where at least one of the Genomiser variants is found in the top 10 candidates, after the native score from each method was filtered through Enhancer-Gene interactions that are part of the FINSURF approach. The first row indicates these counts for each method, where Genomiser variants are ranked among Platinum variants from within regulatory regions targeting the disease genes from each disease. The total of 30 OMIM disease is reduced for some methods, as ranking is impossible if they do not provide scores for all Genomiser variants. The second row shows these counts for the subset of OMIM diseases where all variants are scored by all methods. Note that here 59% of Platinum variants are discarded, reducing the space search in an unrealistic fashion. d. Comparison of ranks for the 37 positive variants among the 875 negatives, based on scores attributed by FINSURF and eight other methods, after the native score from each method was filtered through Enhancer-Gene interactions that are part of the FINSURF approach. Ranks were normalised between 0 and 100 for each method (y-axis). Colours represent different diseases. The graph shows that there is little correlation between variant ranks among the different methods. 
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