Skip to main content
Advertisement

< Back to Article

Exome sequencing in multiple sclerosis families identifies 12 candidate genes and nominates biological pathways for the genesis of disease

Fig 5

Functional analysis.

a) Primary structure of single-chain PLAU protein, adapted from Berkenblit et al. 2005 [32]. Kringle domain is provided in gray, with cysteine residues forming disulfide bonds indicated in white. Amino acid substitutions identified in MS families are shown. b) Crystal structure for NLRP12 leucine rich repeat (LRR) sixth domain showing conserved amino acid residues was predicted from NP_653288.1 with I-TASSER (Iterative Threading ASSEmbly Refinement) [181], and the p.Leu972His substitution introduced using PyMol 1.7. c) Western blot showing expression of pro-caspase-1, caspase-1, NLRP12 and β-actin in microglial (BV2) cells transfected with an empty vector (vector), wild-type NLRP12 (WT) or mutant constructs (L475Q or L972H); and d) expression of iNOS, NCOA3 and β-actin in microglial (BV2) cells transfected with an empty vector (vector), wild-type NCOA3 (WT) or NCOA3 p.Cys485 (R485C). Histograms depict mean expression ± standard error. *Tukey’s HSD post hoc p-value < 0.001. r.u. relative units.

Fig 5

doi: https://doi.org/10.1371/journal.pgen.1008180.g005