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Abstract

Bacteria prudently regulate their metabolic phenotypes by sensing the availability of specific nutrients, expressing the
required genes for their metabolism, and repressing them after specific metabolites are depleted. It is unclear, however,
how genetic networks maintain and transmit phenotypic states between generations under rapidly fluctuating
environments. By subjecting bacteria to fluctuating carbon sources (glucose and lactose) using microfluidics, we discover
two types of non-genetic memory in Escherichia coli and analyze their benefits. First, phenotypic memory conferred by
transmission of stable intracellular lac proteins dramatically reduces lag phases under cyclical fluctuations with intermediate
timescales (1–10 generations). Second, response memory, a hysteretic behavior in which gene expression persists after
removal of its external inducer, enhances adaptation when environments fluctuate over short timescales (,1 generation).
Using a mathematical model we analyze the benefits of memory across environmental fluctuation timescales. We show that
memory mechanisms provide an important class of survival strategies in biology that improve long-term fitness under
fluctuating environments. These results can be used to understand how organisms adapt to fluctuating levels of nutrients,
antibiotics, and other environmental stresses.
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Introduction

Escherichia coli cells grown in the presence of both glucose and

lactose first consume glucose, which is more easily metabolized,

before expressing the genes necessary for lactose catabolism [1–3].

The prioritization of bacterial metabolism toward a specific

substrate is achieved by catabolite repression and is often observed

in microorganisms grown in the presence of multiple carbon

sources [4]. Metabolite selection usually favors more accessible

energy sources when multiple substrates are available [5]. Since

transitions between metabolic phenotypes incur a significant

growth rate cost, microorganisms are faced with a fitness

optimization problem in temporally fluctuating environments

[6]. For instance, a premature commitment to new metabolic

substrates initially present in low quantities may limit long-term

fitness if levels remain insufficient to support growth. Similarly, a

delayed phenotypic switch may reduce overall nutrient intake and,

as a result, cells may be outcompeted by populations with a more

timely response.

Recently, simple laws that relate bacterial growth, translational

efficiency, and metabolic rates have been revealed through a

combination of theory and experiments [7]. These laws, which

hold for bacteria growing in constant environments (e.g. in

chemostats), can be used to predict key features of bacterial

adaptation, including fitness landscapes of drug resistance [8]. In

fluctuating environments, however, little quantitative data exists

on the physiological strategies that bacteria use to optimize

growth. When environments fluctuate, steady-state growth may

not be achieved in any given environment, and long-term growth

rates must be measured across multiple fluctuations over longer

timescales. Experimentally, this presents challenges that are

currently being addressed using microfluidics and microscopy,

e.g. yeast have been grown in alternating sugars [9], while bacteria

have been exposed to single step changes of carbon source [10].

Here, we present experiments in bacteria over longer timescales,

during which many back-and-forth nutrient fluctuations are made

while continuously measuring cellular growth. In particular, we

probe gene regulatory networks using an innovative microfluidics

device over timescales that have not previously been examined

and discover that memory-based bacterial growth strategies

constitute a primary mode of adaptation.

Memory in bacteria has been studied in the context of

epigenetic switches [11], which can maintain stable phenotypic

states over hundreds of generations. It was recently demonstrated

that cell fate decisions in Bacillus subtilis employ memory in the

transition between sessile chaining and motility [12]. More

broadly, historical growth conditions are known to alter several

bacterial responses [13], implying that memory may be present in
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multiple cellular processes. Indeed, the presence of feedback loops,

coupled with a tuning of gene expression levels, can introduce

hysteresis and memory in genetic networks [14].

Despite these observations, very little is known regarding how

memory influences growth rates and, more importantly, the

recovery from sudden environmental changes. Moreover, along

with prudent gene regulation, bacteria employ an additional fail-

safe known as the stringent response, which is useful in case carbon

starvation persists and cell viability becomes compromised.

Coordinated by the signaling molecule (p)ppGpp, which accumu-

lates under either amino-acid depletion or carbon starvation [15–

17], the resulting protective state exhibits growth arrest, lowered

translational and metabolic activity [18], and expression of

biosynthetic genes [19]. Cellular memory of historical phenotypes

could impart a key advantage in a changing environment by

alleviating the cost of frequent regulatory switches, as well as

mitigating the stringent response, while allowing cells to adapt to

multiple environments. This possibility, while beneficial in theory

[20], has not been tested or quantified experimentally.

We investigate memory-based adaptive mechanisms by asking

whether bacterial cells grown in fluctuating environments would

either adopt a mixed phenotype and remember adaption to both

environments, avoid metabolic switching altogether and lock into a

single phenotype, or fail to fully adapt to either environment and

remain in a partially adapted state. We developed a microfluidic

device that maintains growing bacterial populations inside micro-

scopic growth chambers (GCs) to study phenotypic changes that

occur in E. coli in response to sudden environmental changes (see

Fig. 1a for schematic representations of the device). Our microfluidic

device shares certain properties with a chemostat – namely the

maintenance of a constant population size and a steady influx of fresh

nutrients. However, while a chemostat maintains a static chemical

environment, the small volume of our device allows the chemical

environment to be changed very rapidly (Fig. S1 and Text S1). Since

the chemical environment is not stable but rather in constant flux, we

call our device a chemoflux. Its design builds on previous ones used to

study bacterial aging [21], yeast fitness under a changing environ-

ment [9], or to characterize growth of mycobacterial cells [22].

Results

Phenotypic memory in response to sudden
environmental changes

The growth rate of E. coli cells is quantified using the lateral

displacement of cells 10 to 15 microns away from the end of the

growth chambers (Fig 1b, see Materials and Methods section for

further details). As we changed the media flowing in the main

channel from MOPS minimal media (MMM) supplemented with

0.4% glucose to MMM+0.4% lactose, a lag phase, manifested as

vanishing lateral movement, occurred immediately following the

environmental change (Fig. 2a and Supp. Video S2) and lasted

approximately 35 minutes. Following the lag phase, cells entered

a recovery phase and progressively resumed growth as the lateral

speed reached a stable rate 55 minutes after the glucose-to-

lactose transition. The measured durations of the lag+recovery

phases in our device are in agreement with bulk measurements of

diauxic shifts, where transitions between glucose- and lactose-

consuming phenotypes occur within an hour on average [23]. On

the other hand, lactose-to-glucose transitions do not impose a

significant metabolic burden on the cells and cellular growth

recovered within 5 minutes (Fig. 2a, inset). The determinants of

lag and recovery phases are analyzed in the next section of

Results.

To investigate whether lac induction is remembered after the

removal of lactose, we monitored the growth dynamics of cells in

an environment where MMM+0.4% glucose and MMM+0.4%

lactose conditions alternate every 4 hours (here, we define T~4h
as the environmental duration). In Fig. 2b, cells were subjected to

three consecutive glucose/lactose cycles: the first glucose-to-lactose

transition resulted in significant lag+recovery phases, but cells were

able to grow on lactose without having to go through a lag phase

when we reintroduced lactose at t~8h and t~16h. The response

to glucose/lactose transitions eventually became seamless, indi-

cating that cells conserved the ability to metabolize lactose through

the 4-hour exposures to glucose. Cells grown under cyclical

glucose/lactose conditions thus displayed phenotypic memory of

their previous metabolic adaptation.

Figure 1. Chemoflux device for growth rate measurement in
changing environments. A) Schematic representation of the
microfluidic device. B) Fluorescence micrograph of cells grown inside
the growth chambers (white dashed lines outline the growth
chambers). The elongation rate of the cells is quantified using the
lateral speed v of cells 15 microns away from the closed end of the
growth chamber (yellow arrow).
doi:10.1371/journal.pgen.1004556.g001

Author Summary

Bacterial adaptation to new environments typically in-
volves reorganization of gene expression that temporarily
decreases growth rates. By exposing cells to fluctuating
conditions using an innovative microfluidic device, we
discover that E. coli cells can remember past environments,
which accelerates their physiological adaptation. Using a
modeling approach combined with experiments, we
demonstrate the adaptive advantage of memory for
organisms that 1) transmit long-lived intracellular proteins
between generations or 2) respond to fluctuations in a
history-dependent manner. Our work describes one of the
simplest examples of adaptive memory in a living
organism and provides significant insights into the
behavior of genetic networks under diverse fluctuations,
including nutrients, antibiotics, and other environmental
stresses.

Memory in Fluctuating Environments
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We determined the timescale over which phenotypic memory

persists by analyzing the dependence of the lag phase on the time

since the last exposure to lactose. Fully induced lac cells, grown in

lactose conditions for 4 h, were exposed to MMM+0.4% glucose

for a time T0, and then switched to a MMM+0.4% lactose

environment. The growth rate of the population following the

glucose/lactose transition was used to determine the duration of

the lag and recovery phases (Fig. S3). The duration of the lag+
recovery phases was measured when T0 is 4h, 5.5h, 7h, 9h or 12h,

or when cells are grown without ever being exposed to lactose

(T0~?). Fig. 2c shows that lac-induced cells retained their ability

to grow on lactose for T0v4h, and went through a progressively

longer lag phase as T0 increased.

To identify the proteins that confer phenotypic memory in the

lac operon (LacZ, LacY or LacA), we measured the duration of the

lag+recovery phases for cells that constitutively express one of the

three lac operon genes. Each gene is driven by the Ptet promoter

(Fig. 3a) and details about the over-expression constructs (pZA31-

lacZ, pZA31-lacY and pZA31-lacA in Fig. 3b–d) are included in

the Materials and Methods section. The duration of the lag+
recovery phases for pZA31-lacZ cells, which over-expressed the b-

galactosidase enzyme, was less than 10 minutes (Fig. 3b), while the

lag+recovery phases of pZA31-lacY cells, which over-expressed

the lactose permease, lasted approximately 40 minutes (Fig. 3c).

Over-expression of lacA, the thiogalactoside transacetylase,

introduced additional variability in the cellular response between

populations and the lag+recovery phases typically lasted longer

than 60 minutes (Fig. 3d), ruling out LacA’s role in phenotypic

memory. These results indicate that high levels of LacZ, and to a

lesser extent LacY, are sufficient to maintain cells in an induced

state.

Since LacZ and LacY have very low degradation rates

(respectively 0:0001 min{1 and %0:002 min{1 [24,25]) the main

factor that decreases internal levels of lac proteins is dilution due to

cell growth. For comparison, we note that the generation time –

the time for the population to double in size – in minimal medium

is approximately 60 minutes (see [26], Text S1, and Fig. S2). The

maintenance of phenotypic memory should therefore be limited by

the number of residual proteins transmitted between the mother

and daughter cell during cell division, and phenotypic memory

may have an intrinsic lifetime which is tied to the minimal lac
protein concentration necessary to maintain cells in an induced

state.

To confirm this hypothesis, we next measured the in vivo lac
protein dynamics during lactose/glucose fluctuations using a strain

expressing functional LacY-Venus fusion molecules [27]. In

Fig. 3e, when lactose and glucose alternated with an environmen-

tal duration T~8h, the LacY-Venus permease density decayed to

its baseline level with a half-life of 60 minutes, confirming that Lac

levels decreased mainly through dilution by growth. Following the

reintroduction of lactose, LacY production resumed after a

25 minute lag and reached its half-maximal value in 21 minutes.

When T was decreased to 90 minutes, expression of the lac
operon was modulated by the environmental fluctuations but did

not decay to zero (Fig. 3f) and cells maintained a residual

intracellular lac protein level in the absence of lactose.

In Fig. 2c, the duration of the lag+recovery phases converged

toward the T0~? value when 12 hours or more separated lactose

exposures. This suggests that the level of lac proteins transmitted

upon cell divisions was insufficient to maintain cells in a fully or

partially induced lac state after 10–12 generations. Furthermore,

the observation that the same population subjected to many

glucose/lactose fluctuations still underwent a lag phase when

lactose was removed for more than 4 hours indicates that memory

of lactose adaptation does not result from the evolution and

fixation of constitutive mutants within the population.

Probing lag and recovery phases using rapid fluctuations
We analyzed the determinants of lag and recovery phases by

exposing uninduced cells to faster fluctuations with an environ-

mental duration T = 10 or 30 minutes, which is significantly

shorter than the 55 minutes required for full adaptation in

constant lactose. For T~30min (Fig. 4a), only the first exposure

Figure 2. Adaptation to fluctuating environments. A) Following a
glucose-to-lactose transition, the growth rate of the cells decreases to
zero before progressively relaxing back to its equilibrium value in about
55 minutes. Data is binned over 5-minute intervals and error bars are
computed from the standard error of the mean (SEM) with N = 5 GCs.
Inset: A much less pronounced effect is observed during lactose-to-
glucose transitions, where cell growth recovers fully after 5 minutes (no
data binning). B) Under fluctuating conditions (environmental duration
T~4h, data binned over 15-minute intervals), cells remember previous
lac induction and do not enter a lag phase when lactose is
reintroduced. C) The duration of the lag (bullets) and lag+recovery
phases (black squares) for lac-induced cells depends on the amount of
time between lactose exposures. Error bars are computed from the
standard error of the regression parameters used to measure the lag+
recovery times.
doi:10.1371/journal.pgen.1004556.g002
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to lactose resulted in cessation of growth; when lactose was

reintroduced after 60 minutes, no lag phase was present and cells

were fully able to grow under lactose conditions. We observed the

same behavior in Fig. 4b for T~10min, where the lag phase still

lasted as long as T but growth started to recover under glucose

conditions and continued to increase through the second exposure

to lactose. Cells growing in a rapidly fluctuating environment,

T = 10 and 30 minutes, were able to grow optimally after only 20

and 30 minutes of lactose exposure respectively, compared to

55 minutes for constant lactose (Fig. 4c).

These experiments yield two key observations. First, the total

time to adapt to lactose is shorter when glucose alternates with

lactose during the adaptation process. Second, during the glucose

exposures (Figs. 4a, t~30–60 min; 4b, t~10–20 min), cells are

able to resume growth but at a reduced rate. We therefore

hypothesized that the lag phase is due to two major barriers that

must be crossed before cells can resume normal growth: (A)

initiation of lac protein production, and (B) recovery from the

stringent response caused by carbon starvation [15,28]. Barrier A

consists of de-repression of the lac operon, lac transcript

production, and translation of the first functional LacZ and LacY

molecules, which enable subsequent positive feedback. Since these

initial events occur in series once the lac operon is stochastically

de-repressed [27], there exists a certain minimum time to cross the

first barrier. In contrast, recovery from the stringent response is

only complete once the accumulated (p)ppGpp has decreased to its

basal level – barrier B therefore gets longer the more time cells

spend without glucose [28].

To test this hypothesis, we attempted to reduce barrier A by

starting with a small amount of lac protein initially, but not enough

to completely eliminate the lag. From Fig. 2c, we know that cells

avoid going through a lag phase when grown for up to 4 hours in

glucose, i.e. about 4 cell divisions, hence their lac proteins are

more than 2{4~6:25% induced; we infer that lac levels are

sufficiently high to prevent stringent response during lactose

exposures once cells have crossed this threshold. We grew lac-

induced cells under glucose conditions for 8 hours (T0~8h),

which diluted their lac proteins to 2{8~0:4% of their maximal

level, before beginning rapid lactose-glucose fluctuations. The

measured duration of the lag+recovery phase for pre-induced cells

was approximately 25 minutes (Fig. 4d, top panel), in agreement

with the lag times shown in Fig. 2c, confirming that the lag phase

was reduced but not eliminated. When the pre-induced cells were

exposed to T~ 5, 10 or 15 minute fluctuating conditions, they

experienced a lag phase only during the first lactose exposure

(Fig. 4d), and immediately recovered their ability to fully grow on

both glucose and lactose. We plot the lag+recovery times across

different fluctuation regimes spanning environmental durations

T = 3–60 minutes in Fig. 4e. We observed that for rapid

fluctuations (Tƒ15min) the total adaptation time was approxi-

mately equal to the duration of the lactose exposure T (red line in

Fig. 4e). This indicates that we have minimized barrier A (which

normally takes a fixed amount of time), and we are mainly seeing

barrier B (which is proportional to the duration of carbon stress).

For Tw15min, cells are able to resume normal growth in lactose

hence barrier B is crossed before the glucose exposure.

Our biological model makes several predictions, which are

confirmed in the following section through direct measurements of

cytoplasmic lac levels. First, Fig. 4d shows that for Tv15min cells

do not cross the barrier B threshold (6:25% induction) during the

initial lactose exposure, but are able to cross it during the glucose

exposure; while the cells must be able to maintain their metabolic

state using phenotypic memory, the very rapid adaptation suggests

that cells may also continue adapting to lactose during the glucose

exposures. Second, the initiation of lac protein production –

barrier A – is a process with a fixed timescale that does not depend

on the duration of carbon stress. Third, once barrier A is crossed,

barrier B can be crossed in as little as 3 minutes (Fig. 4e,

T~3min). We test these predictions in the next section by using a

Figure 3. Molecular components of phenotypic memory in the
lac operon. A) Representation of the over-expression plasmids based
on the Lutz and Bujard expression system [43]. B) The lag+recovery
phases last less than 10 minutes when cells over-express LacZ. C) LacY
over-expression shortens by approximately 15 minutes the duration of
the lag+recovery phases following a glucose/lactose transition. D) For
LacA over-expression the lag+recovery phases typically last longer than
60 minutes. Data is binned over 5-minute intervals. Error bars: SEM with
N = 5 GCs. E) LacY-Venus fusion proteins are used to track the
intracellular Lac protein levels. The in vivo LacY-Venus levels decrease
to zero when glucose and lactose alternate every 8 hours. F) A residual
protein level remains within the cells when the environmental duration
is 90 minutes. The induction and decay dynamics are accurately
described by exponential functions (red lines). Decay in panel E was
fit to a form e{rt, where r~0:012 min{1 ; induction was fit to the form
(1{e{k(t{t0)) for twt0 , where k~0:033 min{1 and t0~25 minutes. Red
lines in panel F are a plot of the fit found from panel E, starting at each
period from the measured initial values.
doi:10.1371/journal.pgen.1004556.g003
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LacY fluorescent protein fusion to measure the dynamics of lac
induction and we further elaborate on this simple biological model

of the lag phases in the Discussion.

Response memory and dynamics of lac protein
expression

To reproduce the conditions of Fig. 4, we measured the changes

in LacY-Venus protein levels in response to short (10–60 min)

lactose exposures. Subjecting cells to a single pulse of lactose –

instead of cyclical fluctuations – ensured that induction dynamics

were measured independently of other effects, such as starvation

and the stringent response, which may be compounded by multiple

glucose-to-lactose transitions. In Fig. 5a, we observed continued

production of lac proteins after each lactose pulse: LacY-Venus

levels continued to rise in the absence of lactose and started to

decrease approximately 40 minutes after lactose was removed from

the environment. These results confirm our conclusion, based on

growth measurements in Fig. 4, that lac induction continues during

the glucose environments following lactose.

We term this behavior response memory: the ability of a

regulatory network to continue to respond after the stimulus has

been removed. Hysteresis and expression delays are to be expected

in multi-level gene regulatory circuits, and in the particular case of

lac regulation these delays can involve the kinetics of mRNA

degradation [29], repressor re-binding [30,31], catabolite repres-

sion mediated by cAMP [32], and dynamics of allolactose, the

intracellular inducer of the lac operon [33]. We therefore

characterized the relative contributions of these effects to the

observed response memory.

First, the ability to detect in vivo changes in lac protein levels is

set by the maturation time of LacY-Venus (both folding and

chromophore formation, measured to last less than 7 minutes in
vivo [34]), which introduces a delay between observed and actual

protein levels. To accurately measure the delay associated with the

LacY-Venus protein maturation, we analyzed the LacY-Venus

fluorescence levels when glucose and lactose environments

alternate with an environmental duration of 90 minutes and

measured the phase difference between the environment and the

LacY-Venus levels. Since no lag phase is observed for cells under

90 minutes glucose/lactose fluctuations (Fig. 2c), reporter delays

do not result from temporary carbon starvation or decreased

protein production during a lag phase, and are due solely to the

reporter maturation time. The average delay measured under

Figure 4. Lag phase and recovery in rapidly fluctuating environments. A) When glucose and lactose alternate with environmental duration
T = 30 minutes, uninduced cells (T0w12h) enter a lag phase following the first exposure to lactose only. No lag phase is measured at t = 60 minutes,
indicating that cells are fully induced when lactose is reintroduced. B) Similarly, when the environmental duration is 10 minutes, cells only spend the
first lactose exposure in a lag phase (N = 5 GCs, error bars = SEM). C) Amount of time uninduced cells were exposed to lactose conditions before
reaching complete growth recovery. Under environmental durations T = 10 and 30 minutes, cells recover following 20 and 30 minutes of lactose
exposure, respectively, compared with the 55 minutes necessary when the environmental duration Tw1h. D) Cells pre-induced at T0~8h have a
25 minutes lag+recovery phase (N = 5 GCs, error bars = SEM). Exposure to rapidly fluctuating glucose/lactose conditions increases adaptation rate,
and cells are able to recover after only one exposure to lactose for environmental durations T = 5, 10 and 15 minutes. E) Measured lag+recovery
times for T0~8h pre-induced cells exposed to fluctuating conditions with an environmental duration T = 3-60 minutes. Error bars = standard error
obtained from lag+recovery regression parameters. All datapoints from T = 3–15 minutes indicate that cells recover shortly after glucose is
reintroduced (red line indicates cases where the lag+recovery times and T are equal), demonstrating that cells are able to fully grow on lactose after a
single exposure to lactose conditions.
doi:10.1371/journal.pgen.1004556.g004
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these experimental conditions is 13.8 minutes (Fig. 5b), which is

an upper bound on the LacY-Venus maturation time since it

includes both maturation time and protein production time. The

observed peak at 40 minutes in Fig. 5a is therefore only partially

accounted for by reporter delay.

We carried out experiments in which cells grown in MMM+
0:4% glucose were subjected to a 60 minutes pulse of MMM+
0:4% glucose+1 mM of the unmetabolizable inducer IPTG, which

yielded identical results to the induction by lactose (Fig. 5c). In

contrast to induction using lactose, which requires LacZ activity to

produce the inducer allolactose, IPTG induces the lac operon

directly. Moreover, while cells under glucose/lactose fluctuations

experience fluctuating levels of glucose-mediated catabolite

repression, constant glucose levels in the IPTG experiments

eliminate this effect. Hence, we see that neither lactose/allolactose

metabolism nor changes in catabolite repression are required for

the observed overshoot. Furthermore, this experiment shows that

the stringent response caused by carbon starvation does not

significantly affect the induction dynamics.

We next tested whether residual intracellular inducer could

account for the observed response memory, by using 2-nitrophenyl

b-D-fucopyranoside (ONPF), an anti-inducer molecule that

competitively binds LacI, excludes IPTG, and increases LacI’s

affinity for its operator site. In Fig. 5c, cells grown in the presence

or absence of 1 mM ONPF exhibited nearly identical induction

profiles under IPTG (tv60 minutes). However, they exhibited

significantly different response memory profiles when the inducer

was removed at tw60 minutes: lac expression in the presence of

ONPF started to decrease 20 minutes after IPTG removal,

compared to the 40 minutes measured in the absence of ONPF.

Residual intracellular LacI-bound inducer could therefore account

for at least 20 minutes of sustained response in the IPTG/glucose

and lactose/glucose experiments. The remaining 6 minutes of

response memory, not accounted for by reporter delay, can be

explained by the measured time for LacI to fully rebind lac
operator sites in the presence of ONPF (*2 min, [30,31]) as well

as the lifetime of lac mRNA (*2 min, [29]).

These in vivo measurements support our predictions above

based on the growth rate dynamics. First, we found that response

memory enables cells to continue responding to lactose through

the glucose exposures. Second, we showed in Fig. 5c that the

initiation of lac protein production is a process with a fixed time

that does not depend on the duration of carbon stress. We note

that because our experiment is not designed for single-molecule

sensitivity, we cannot measure the initiation events themselves.

However, we clearly see that cells cross our detection threshold at

approximately the same time when induced with IPTG in glucose

(i.e. without any carbon stress) or with lactose under carbon stress.

Third, we measured the post-initiation rate constant for lac protein

production to be 0:03 min{1. This implies that post-initiation the

time to increase lac induction levels to 6:25% would be

approximately 2 minutes, which is consistent with our prediction

that barrier B can be crossed in as little as 3 minutes.

Modeling lac operon dynamics with memory in a
fluctuating environment

While the major determinants of the lag phase were found to be

the initial induction steps and the recovery from stringent

response, the potential fitness gains that cells might reap from

response memory remained unclear. To better quantify the fitness

advantage of response memory in the lac operon, we adapted the

established metabolic model described in [35] to fluctuating

Figure 5. In vivo measurement of LacY expression in fluctuating environments. A) Induction dynamics in response to a single pulse of
lactose lasting 10, 20, 30, 45, or 60 minutes. In each case, the permease density continues to increase and levels start to decay approximately
40 minutes after lactose is removed from the environment. Experiments were performed with T0~8h of glucose between induction events (x-axis:
red = glucose, blue = lactose). B) Measurement of phase difference between the glucose/lactose environment and expression level (cyan line =
average over 5 periods) due to LacY-Venus protein production and maturation times. Measurements from a long experiment in a T~90min periodic
environment (inset) are superimposed onto a single period. The LacY-Venus reporter delay lasts 13.8 minutes on average (x-axis: red = glucose, blue
= lactose). C) Induction by either 60 minutes of 0.4% lactose (red line, x-axis: red = glucose, blue = lactose) or 1 mM IPTG (blue diamonds, x-axis:
red = glucose, blue = glucose + 1 mM IPTG) leads to similar lac induction profiles. The anti-inducer ONPF decreases the duration of response
memory, causing lac levels to peak only 20 minutes after inducer removal (yellow squares, x-axis: red = glucose + 1 mM ONPF, blue = glucose +
1 mM IPTG).
doi:10.1371/journal.pgen.1004556.g005
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environments (see Materials and Methods). We focused exclusively

on the observed memory effects and their impact on metabolic

activity, and did not model the stringent response since it did not

significantly affect the induction dynamics (Fig. 5c). The model

explicitly accounts for intracellular concentrations of lactose,

allolactose, lac operon mRNA, and lac proteins, and captures

several features we observed in experiments. For example, in

response to a single pulse of extracellular inducer, protein levels

can continue to increase after the stimulus is removed, causing an

overshoot, if sufficient mRNA and intracellular inducer levels are

maintained (Fig. 6a). Likewise, the model exhibits phenotypic

memory consistent with our observations. Fig. 6b shows the

minimum and maximum lac protein levels at equilibrium as a

function of the environmental duration T in units of generation

time (measured in the bulk in [26] to be 60 minutes in MMM+
glucose).

Since response memory can be explained by the LacI-mediated

repression kinetics (Fig. 5c), and given that the timescales for LacI

rebinding to the operator have been measured to be only a few

minutes [30,31], our data suggest that there is sufficient residual

allolactose inside the cell for sustained expression. We used the

model to test this conclusion by artificially reducing the allolactose

degradation rate to zero during glucose environments. We

obtained similar results across a range of slower but non-zero

degradation rates. We show in Fig. 6c the lac protein levels

predicted by solving the model with (solid line) and without (dotted

line) residual inducer, the latter yielding the response memory

behavior in which cells continue adapting through the glucose

exposures. The predicted dynamics closely follow the measured lac
levels obtained from T~30 minutes IPTG induction (cyan line).

The highlighted regions in Fig. 6c correspond to excess metabolic

activity, which we compute by integrating the total amount of

lactose consumed over a full glucose/lactose cycle at equilibrium

(t&T ). We find that cells with response memory exhibit an

increased capability to metabolize lactose following short expo-

sures to lactose and, if the fluctuating conditions were to persist,

are able to hydrolyze up to 100% more lactose when the

environment fluctuates faster than the typical generation time

(T~0:01{1 generations, Fig. 6d). The modeling results support a

picture in which response memory provides a large adaptive

advantage when external fluctuations occur faster than the cell

division time, while phenotypic memory is beneficial for slower

fluctuations, spanning several generations.

Discussion

We have presented two distinct memory mechanisms in the lac
operon of E. coli, phenotypic and response memory, each of which

is beneficial over different timescales. Phenotypic memory allows

cells to maintain an adapted state for multiple generations after a

specific carbon source is removed from the environment. Since

phenotypic memory operates through the transmission of stable

cytoplasmic proteins, it may be employed as a general strategy in

other organisms to transmit metabolic information between

generations, as observed e.g. in the yeast galactose system [9,36].

More generally, the intrinsic mechanism behind phenotypic

memory being passive – based on intracellular proteins whose

lifetime is longer than a typical generation – similar memory

effects are expected to be present for other fluctuations and in

other organisms. Adaptation mechanisms that rely on the

expression of long-lived permease molecules – e.g. small molecule

transport [37] or antibiotic/toxin efflux systems [38] – or the

production of enzymatic components whose activity confers a

distinct fitness advantage such as sigma factors involved in stress

response systems [39] constitute examples of phenotypic memory

mechanisms.

We used fast fluctuating environments to dissect the determi-

nants of lag phases following a transition from glucose to lactose.

Our results suggest a simple biological model of the lag phase in

which lac protein activity and the stringent response are mutually

inhibitory processes: Lac protein activity in lactose has an

inhibitory effect on the stringent response due to glucose

production and amino acid synthesis, while the stringent response

initially inhibits lac protein production through its global

inhibitory effects on translation. To see this, we consider two

examples. First, we compare T~10min for uninduced and

Figure 6. Mathematical modeling quantifies fitness advantage
of memory. A) Schematic of the gene regulation model, including
extracellular inducer (lout), mRNA (m), and protein (z). B) The maximum
and minimum (top and bottom dashed curves, respectively) lac protein
concentrations depend on the environmental duration T , shown in
units of generation time (1 generation = 60 minutes). A few
representative examples of how lac levels evolve under fluctuating
conditions are shown in the insets. C) A difference in lac expression
levels is observed for models with (solid line) and without (dashed line)
response memory. The model that includes response memory correctly
predicts the experimentally measured IPTG induction dynamics (cyan
line). Response memory leads to increased intracellular LacZ levels and
higher catabolic activity. D) The lactose hydrolyzed per unit time at
equilibrium during a complete glucose/lactose cycle (‘c(T)) is
compared between the two models (dashed line: no response memory;
solid line: response memory). Cells making use of response memory
consume up to 100% more lactose under rapid fluctuations.
doi:10.1371/journal.pgen.1004556.g006
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pre-induced cells (Fig. 4b+d). In the pre-induced case, after the

first lactose exposure cells rapidly recover full growth in glucose,

whereas if no lac proteins are initially available, cells experience a

slow recovery in glucose. The stringent response due to the lactose

exposure is therefore much less severe when a small amount of

LacZ (0:4% induced) is available to hydrolyze lactose and initiate

positive autoregulation. Second, we note that for T~3min
(Fig. 4e), full adaptation to lactose is achieved by the second

lactose exposure, which means that lac protein levels can cross the

6:25% threshold within 6 minutes total. However, for T~10min
(Fig. 4d), the cells do not begin growing during the first lactose

exposure even though more than 6 minutes have elapsed. We

conclude that protein production during the stringent response is

too slow to allow cells to cross the threshold during the short

lactose exposures for Tv15min.

While cells under fast glucose/lactose fluctuations could in

principle become constitutively active and never repress the lac
operon, the metabolic cost associated with unnecessary lac
expression would incur a significant fitness disadvantage [40]. In

particular, if lactose encounters unexpectedly cease, this cost will

no longer be temporary, but sustained by the population

indefinitely. Cells employing response memory avoid such long-

term cost by transiently expressing the required genes for a short

amount of time following an initial exposure to the stimulus, with a

maximal metabolic cost that is limited by the duration of this

transient expression. Should environmental fluctuations cease,

cells will suffer only a small, short-term fitness cost. On the other

hand, should fast fluctuations persist, as we have shown the cells

reap a significant fitness benefit. In particular, we showed that cells

reach higher induction levels more rapidly by maintaining their

response profile following the removal of an external inducer.

Memory in different genetic network architectures could affect

not only the cost of gene expression, but also the evolution of gene

expression levels. The timescale over which phenotypic memory

persists is determined to a large extent by the gene’s expression

level (provided the protein is sufficiently stable). Expression levels

may be evolutionarily tuned not only to support growth in a single

environment, but also to provide cells’ progeny with memory of

past environments. The interplay of memory and metabolic

constraints could thus dramatically change the nature of evolu-

tionary trajectories and optima. We expect theoretical analyses

may be fruitfully applied to explore these possibilities.

The power of the memory mechanisms we have described lies

in their universality. Protein lifetimes and regulatory networks can

be tuned in simple ways to give rise to physiological memory under

rapidly changing conditions. Microorganisms have to handle both

internal and external sources of noise, and while many genetic

networks have evolved to exploit stochastic fluctuations of

intracellular molecular components to regulate key cellular

processes [41], we have shown that molecular rates of signal

transduction reactions can be modulated to optimize response

profiles for growth in fluctuating environments. Together,

phenotypic and response memory allow bacteria to adapt to a

wide range of fluctuation timescales in sophisticated, history-

dependent ways. These memory mechanisms constitute general

strategies that bacteria can employ to adapt to diverse environ-

mental fluctuations – including nutrients, antibiotics, and other

physiological stresses.

Materials and Methods

Device description and fabrication
The microfluidic device used in this study was made using

standard soft lithography and microfabrication techniques and

consists of growth chambers and a main flow channel patterned

from two SU-8 layers 1.1 microns (SU-8 2, spun at 3000 rpm) and

20 microns (SU-8 2025, spun at 4000 rpm) in height, respectively.

The devices were fabricated by making polydimethylsiloxane

(PDMS) replicates of the SU-8 master. The PDMS devices were

peeled from the silicon master and 1.5 mm holes were punched

(Harris Uni-core, Ted Pella) to create the input and output ports

and each individual device was bonded to a glass bottom petri dish

(PELCO Glass Bottom Dishes, Ted Pella) using an oxygen plasma

treatment. 16ga needles attached to tygon tubing (TYGON

tubing, Cole Parmer) were inserted into each port and inline

solenoid valves (two-way normally closed 1/16 12VDC, Cole

Parmer) were used to control liquid flow inside the device from

pressurized reservoirs. A flow rate of 5 mL/h, which corresponds

to a flow speed of 30 cm/s inside the main channel, was used by

applying a 6psi pressure to the reservoirs. When transitioning

between two media, both valves were closed for 15 seconds before

the new one was opened to let the pressure equilibrate inside the

device and to avoid backflow problems. A T-junction upstream of

the growth chambers ensured that transitions between the

different media occurred very rapidly. By flowing a fluorescent

dye inside the device, the transition between each type of media

was measured to occur in less than 250 milliseconds (Supp. Video

S1) in the main flow channel and no residual flow from the ‘‘off’’

inlet port was observed.

Growth rate measurements
Cells inside the growth chambers push their immediate

neighbors toward the main flow channel as they increase in size,

and the lateral speed v at which the cells move is proportional to

the population’s mean elongation rate. An optical flow algorithm

implemented using openCV [42] was used to measure the

displacement between successive frames. This displacement was

used to find the average cell speed v over the region between 10

and 15 mm away from the closed end of the growth chamber. The

cell speed was then averaged over a 5 minute time-window,

averaged over the 5 chambers present in the image, and scaled

relative to the speed measured under MMM+0.4% glucose

conditions. The lateral speed reports on the cumulative growth

rate of cells in the first 10 microns of the growth chamber

providing a measure of the relative growth rate of the population.

Error bars on relative growth plots report the standard error of the

mean as averaged over the 5 chambers present in a single field of

view. These error bars measure intrinsic cell-to-cell variability in

growth, due to stochasticity in cell division rates, elongation rates,

and gene expression processes.

Mathematical model of lactose metabolism
The lac induction dynamics of a population subjected to sudden

environmental changes are modeled as described in [35], with an

additional equation to account for mRNA transcription. The

model assumes that LacY protein levels are proportional to LacZ

levels. Unless otherwise noted in Table 1, refer to [35] for a

complete rationalization behind each parameter’s value. The set of

equations are given by

_‘‘~az
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� �
{
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‘=K‘

1z‘=K‘za=Ka
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where ‘, a, m, and z are the intracellular concentrations of lactose,

allolactose, mRNA and LacZ proteins, respectively (parameters

are specified in Table 1).

Model equations were solved numerically for cyclical glucose/

lactose conditions with an environmental duration

T~0:06{6000 minutes. After a time t&T , the lac expression

levels immediately before a glucose/lactose (lactose/glucose)

change are recorded to obtain the minimum (maximum) lac
protein level. The expression for the lactose hydrolysis rate ‘c(T) is

given by

‘c(T)~
1

2T

ðt0z2T

t0

bz(t)
‘(t)=K‘

1z‘(t)=K‘za(t)=Ka

� �
dt, ð5Þ

where z(t), ‘(t), and a(t) are obtained by solving Eqns. 1-4, and

t0&T .

To qualitatively compare behaviors with and without response

memory, we artificially reduced the rate of allolactose turnover in

glucose environments (taking d?0) to attain response memory in

our simple model. Similar results were obtained by reducing

instead the mRNA degradation rate in the transition from lactose

to glucose.

Full methods as well as further details of microfluidic

fabrication, strain description, image acquisition and analysis,

and any associated references are provided in Text S1.

Supporting Information

Figure S1 Timescale of the environmental change inside a

chemoflux. Fluorescence levels measured in the growth chamber

following DI water/DI water + fluorescein media transitions. The

transition are accurately described by exponential functions (red

lines, ton~1:7 seconds and toff ~2:7 seconds).

(PDF)

Figure S2 Growth rate measurement. The growth rate of the

population is extracted from the cell-cycle age distribution of cells

growing inside GCs under constant MMM+0.4%glucose condi-

tions. Since each cell division event yields two cells at age zero, the

fraction of cells at age 0 is twice the population’s growth rate. The

age of cells growing in 5 GCs over 200 minutes is combined to

find, from the fraction of cells at age 0, a population growth rate

c~0:0107 min{1 (generation time = 64.7 minutes).

(PDF)

Figure S3 Duration of the lag phase. A) The duration of the lag+
recovery phase is monitored for cells that encounter lactose for the

first time in more than 24 hours. Cells with a fully induced lac
operon are exposed to MMM+0.4% glucose for 12h, 9h, 7h, 5.5 h

and 4 h. B) - F) The duration of the lag and recovery phases is

computed from a linear regression of the lateral cell speed and the

results are presented in Fig. 2c.

(PDF)

Text S1 Supplementary methods.

(PDF)

Table 1. Model parameters.

Symbol Description Value

c growth rate 0:0115 min{1

a permease import turnover number 600 min{1

b b-gal lactose turnover number 28,500 min{1

n lactose?allolactose branching ratio 0.448

d b-gal allolactose turnover number 23,000 min{1

c basal b-gal level 34.2 nM

E fully induced b-gal level 34,286 nM

‘out external lactose cencentration 11,700 nM

Ki permease Michaelis constant 56105 nM

K‘ b-gal lactose Michaelis constant 2,530 nM

Ka b-gal allolactose Michaelis constant 1,200 nM

Km half-maximal lac induction level 105 nM

d mRNA transcription rate 839 min{1

x mRNA degradation rate 0:693 min{1

n Hill number for lac induction 2

Parameters used in the mathematical model of the lac operon. Unless otherwise noted, refer to [35] for a description of the parameter values. The growth rate c
corresponds to a generation time of 60 minutes (i.e. without the fitness costs associated with GFP and KanR production).
doi:10.1371/journal.pgen.1004556.t001
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Video S1 A video showing transition of media inside the

chemoflux from DI water to DI water + fluorescein (see Fig. S1 for

quantification).

(MOV)

Video S2 A video of cell growth in the chemoflux growth

chambers during a glucose-to-lactose transition.

(MOV)
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