Text S1 Supporting statistical methods

Four-Groups Mixture Model 

Here, we describe the model-based methodology for computing pleitropy-informed conditional and conjunction analyses, complementary to the model-free approach presented in the main text. Let z be the GWAS test statistic (z-score) with corresponding nominal significance p (two-tailed probability of observed z-score under the null hypothesis of no effect).  A standard Bayesian two-groups mixture model1[]
 is given by





f(z) = π0f0(z) + (1-π0)f1(z)

[S1]

where f0 is the null distribution (e.g., standard normal after appropriate genomic control), f1 is the non-null distribution (which may be estimated parametrically or non-parametrically, and π0 is the proportion of null SNPs. For example, Yang et al.
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[2]
 formulate [S1] as a mixture of Gaussian distributions. From model [S1] we can define the Bayesian False Discovery Rate (denoted by FDR) and the local False Discovery Rate (denoted by fdr) for a given effect size z as





FDR(z) = π0F0(z)/ F(z)

[S2]





fdr(z) = π0f0(z)/ f(z)


[S3]

where F0(z) and F(z) are the cumulative distribution functions (cdfs) corresponding to f0(z) and f(z), respectively. In what follows we focus on extensions to conditional and conjunction fdr (Eq. [S3]); it is straightforward to extend this to include conditional and conjunction FDR (Eq. [S2]).

We generalize Eq. [S1] to bivariate z-scores from two phenotypes (z1 for phenotype 1 and z2 for phenotype 2) using a bivariate density from a four-groups mixture model


f(z1, z2) = π0f0(z1, z2) + π1f1(z1, z2) + π2f2(z1, z2) + π3f3(z1, z2)

[S4]

where π0 is the proportion of SNPs for which both phenotypes are null, π1 is the proportion of SNPs where phenotype 1 is non-null and phenotype 2 is null, π2 is the proportion of SNPs where phenotype 1 is null and phenotype 2 is non-null, and π3 is the proportion of SNPs where both phenotypes are non-null (i.e., the pleiotropic SNPs). The mixture densities in [S4] are given by


 

fo(z1, z2) = N(0,Σ0)


 

f1(z1, z2) = N(0,Σ0 + D1Σ1 D1T)


 

f2(z1, z2) = N(0,Σ0 + D2Σ1 D2T)


 

f3(z1, z2) = N(0,Σ0 + Σ1)

[S5]

where Σ0 and Σ1 are arbitrary 2 x 2 variance-covariance matrices, D1 is a 2 x 2 matrix with a one in the first row, first column and zeros elsewhere, and D2 is a 2 x 2 matrix with a one in the second row, second column and zeros elsewhere. This model is a simple bivariate extension of the mixture of Gaussians employed in Yang et al.
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[2]
. An alternative approach could model the non-null marginal densities via nonparametric methods and model their dependence using a copula formulation3[]
. Note, model [S5] allows for empirical null distributions with marginal variances, the diagonal elements of Σ0, potentially larger than 1. Moreover, the off-diagonal elements of Σ0 allow for non-zero covariance between null SNPs. The proportions π = (π0, π1, π2, π3) and the parameters of the non-null distributions can be estimated using methods such as Markov Chain Monte Carlo (MCMC) algorithms or maximum likelihood (ML) estimation.  Figures S4 and S5, present empirical and MCMC-estimated marginal and conditional QQ-plots for SCZ and BD, respectively. To provide a comparison of a trait only weakly pleiotropic with SCZ and BD, we show the empirical and model-based conditional QQ-plots of SCZ given level of significance of type 2 diabetes (T2D) GWAS data
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[4]
 in Figure S6.  QQ-plots of BD conditional on T2D, not shown here, are qualitatively similar.

The estimated vector of probabilities π = (π0, π1, π2, π3) from these fits can be used to test whether the degree of pleiotropy is significantly higher than expected by chance if both phenotypes were independent. Independence implies that the joint pdf of both phenotype summary scores is a product of two two-group mixture models (two independent versions of Eq. [S1]). It is easy to show that testing for excess pleiotropy over that predicted by independence is equivalent to showing that π3 > π1π2/π0 in Eq. [S4] or equivalently that the log-odds ratio



LOR(Phen. 1, Phen. 2) = log{π3/1-π3} – log{(π1π2/π0)/(1- π1π2/π0)}

[S6]

is greater than zero. Using posterior draws from the MCMC algorithm, estimates of LOR with 95% posterior credible intervals are: LOR(SCZ,BD) = 7.1 [8.0, 8.9], LOR(SCZ,T2D) = 1.2 [-0.6, 3.1], and LOR(BD,T2D) = 3.8 [3.1, 4.5]. In particular, the departure from independence of SCZ and BD is highly significant, with a 95% CI bounded well above zero, whereas pleiotropy between SCZ and T2D is not significantly different from zero. Estimates and 95% CIs were produced using the SCZ/BD data z scores estimated using non-overlapping controls, and include an adjustment to account for correlation of SNPs (i.e., LD) that assumes an effective degree of freedom of 500,000 independent SNPs. 

We also estimated the proportion of pleiotropic SNPs for each phenotype. For example, π3/(π1 + π3) is the proportion of pleiotropic SNPs for phenotype 1 (i.e., the proportion of non-null SNPs for phenotype 1 that are also non-null for phenotype 2). Again using the MCMC estimates from the bivariate mixture of Gaussians, the proportion of pleiotropic SNPs for BD with SCZ was 0.78 (95% CI: [0.68, 0.88]), the proportion for SCZ with BD was 0.90 [0.78, 1.00], the proportion for SCZ with T2D was 0.02 [0.0, 0.09], the proportion for BD with T2D was 0.09 [0.01, 0.16]. ML estimates and 95% CIs were again produced using the SCZ/BD data z-score estimates with non-overlapping controls, and include an adjustment to account for correlation of SNPs. The large increase in power for BD | SCZ noted below is due in part to the high proportion of non-null SCZ SNPs that are also non-null BD SNPs. 

Conditional and Conjunction Local False Discovery Rate

From the estimates of the four-groups mixture pdf (Eq. [S4]) we can compute estimates of the conditional pdf of z1 given z2 and hence the conditional fdr of the first phenotype given the second

fdr(z1| z2) = f(z1| z1 null, z2) Pr(z1 null | z2) / f(z1| z2)

[S6]

where f(z1| z1 null, z2) is the null density of z1 conditional on z2, Pr(z1 null | z2) is the probability that z1 is null given z2, and f(z1| z2) is the mixture density of z1 conditional on z2. With component densities as given in Eq. [S5], this becomes

fdr(z1| z2) = [π0 f0(z1, z2) + π2 f2(z1, z2)]/ f(z1, z2),

[S7]

where f(z1, z2) is the joint density given in Eq. [S4]. 
We can also compute the conjunctional fdr of both phenotypes as

fdr(z1, z2) = f(z1, z2| z1 null, z2 null) Pr(z1 null, z2 null)/ f(z1, z2)

[S8]

where f(z1, z2| z1 null, z2 null) = ϕ(z1) ϕ(z2) is the joint null density of z1 and z2,  Pr(z1 null, z2 null) is the probability that both z1 and z2 are null, and f(z1, z2) is the joint pdf of z1 and z2. With densities given in Eq. [S5], this becomes

fdr(z1, z2) = π0 f0(z1, z2) / f(z1, z2)

[9]

Conditional Local False Discovery Rate and Power

Conditional local false discovery rates fdr(z1| z2) can lead to significant increases in power when two phenotypes are genuinely pleiotropic (i.e., when LOR(Phen. 1, Phen. 2) is significantly larger than zero).  Here, power is defined in terms of the probability of rejecting the null hypothesis for SNPs that are in fact non-null for a given fdr threshold α. In this sense power corresponds to sensitivity to detect non-null SNPs and power diagnostics correspond can be presented as ROC-type curves as detailed in Efron5[]
. In Figures 5, 6 and S7 we present power diagnostic plots for conditional fdr estimated using the MCMC estimates from the bivariate mixture of Gaussians model. The x-axis is the fdr (1-specificity) whereas the y-axis is the proportion of non-null SNPs rejected (sensitivity, or power). ROC curves include marginal fdrs and conditional fdrs of phenotype 1 given phenotype 2. In particular these plots demonstrate a very large increase in power for using fdr of BD | SCZ. For comparison, we include ROC curves from a hypothetical doubling of the sample size (corresponding to scaling the variance-covariance matrix Σ1 of the non-null distribution by two.

Note, estimates of power in the sense described above are sensitive to assumptions about the shape of the non-null distribution near zero. However, relative power (the ratio of sensitivity of conditional fdr with marginal fdr for a given threshold α) is well identified. For example, using the fdr cut-off α ≤ .05, the ratio of power for conditional fdr of BD | SCZ vs. marginal fdr of BD is ~15. The ratio of power for unconditional vs. conditional fdr for SCZ | BD is 5.7. In contrast, the ratio of power for unconditional vs. conditional fdr for SCZ | T2D is 1.00, indicating no improvement whatsoever. 

Q-Q plots 

Q-Q plots compare a nominal probability distribution against an empirical distribution.  In the presence of all null relationships, nominal p-values form a straight line on a Q-Q plot when plotted against the empirical distribution. For each phenotype, for all SNPs and for each conditional subset, -log10 nominal p-values were plotted against -log10 empirical p-values. Leftward deflections of the observed distribution from the projected null line reflect increased tail probabilities in the distribution of test statistics (z-scores) and consequently an over-abundance of low p-values compared to that expected by chance under the global null hypothesis, also termed ‘enrichment’. 
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