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S1 Appendix: Standardization of time series from spatially resolved datasets. 

 Datasets collected through the Rockfish Recruitment and Ecosystem Assessment Survey 

(RREAS; pelagic juvenile fish and invertebrates survey) and the California Cooperative Oceanic 

Fisheries Investigations (CalCOFI, ichthyoplankton survey) include spatial attributes and were 

standardized using Generalized Additive Models (GAM) to create a univariate time series for 

each species included in our analysis. 

 

RREAS Survey  

Because many species in the RREAS survey were absent from a large number of 

observed trawls, we modeled species occurrence and abundance separately, using a delta GAM 

approach with two sub-models (Hastie 1990, Guissan 2002). In the first sub-model, species 

occurrence (presence-absence) was modelled using a binomial GAM with a logit link. In the 

second model (‘positive model’), species abundance (count) conditional on the catch of at least 

one individual was modelled using a Poisson GAM with a log link. The formulations of the two 

sub-models were analogous and as follows: 

𝑃!"($,&)		or	𝐶!"($,&) = 𝑦𝑟 + 𝑠(𝜑, 𝜆) + 𝑗𝑑𝑎𝑦!"($,&) + 𝑗𝑑𝑎𝑦!"($,&)) + 𝜀!"($,&) 
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where P, the probability of species occurrence, or C, an estimate of species abundance when the 

species is present, is a function of year (yr, as factor), latitude (φ) and longitude (λ), and Julian 

day (jday). A two-dimensional smoothing function is denoted by s and 𝜀 indicates an error term.  

Using the fitted GAMs for each species, we generated predictions of overall abundance 

of individual species. First, we created spatial occurrence and abundance distribution profiles by 

creating a grid of all combinations of model explanatory variables: geographic coordinates 

(latitude and longitude), Julian day, and year. We restricted the range of geographic coordinates 

to 20 values within the upper 0.8 and lower 0.2 quantiles of the data set, and bounded the range 

of Julian days to the upper 0.9 and lower 0.1 quantiles. This was done to avoid edge effects that 

can result in unrealistic predictions. All unique sampling years were included in the grid. Next, 

the probability of occurrence and estimates of abundance were predicted for each combination of 

the explanatory variables, and then the predictions from the two sub-models were multiplied to 

determine the overall abundance of individual species. Lastly, we calculated the mean 

standardized abundance of each species in each year from the prediction grid to generate the 

univariate time series of species abundance used in our study analyses. 

 

CalCOFI survey 

The CalCOFI time series of ichthyoplankton densities were standardized using a Tweedie GAM 

(power parameter fixed at 1.25) (Tweedie 1984, Dunn ad Smyth 2002). The model formulation 

was as follows: 

𝐷!"($,&) = 𝑦𝑟 + 𝑠𝑒𝑎𝑠𝑜𝑛 + 𝑠(𝜑, 𝜆) ∙ 𝑦𝑟 + 𝜀!"($,&) 
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where species density (D) is a function of year (yr), season (spring, summer), and latitude (𝜑) 

and longitude (𝜆). The two-dimensional smoothing function and error term are indicated by s 

and 𝜀, respectively. 

Similar to above, we used the fitted GAMs for each species to generate predictions of 

species densities. We first created a spatial abundance distribution profile by creating a grid of 

different combinations of the model covariates. Here we restricted the range of geographic 

coordinates (latitude and longitude) to those from sampling stations that were sampled ≥ 20 

years. We included all sampling years in the grid and limited the season to spring only. Species 

densities were then predicted for each combination of the model covariates, and the univariate 

time series of species abundance was generated by calculating the mean standardized density of 

each species in each year from the prediction grid. 

The delta GAMs and Tweedie GAMs were run using the ‘mgcv’ package (v1.8-34; 

Wood 2011, 2017) in R.  

 

References 

Dunn PK, Smyth GK. Series evaluation of Tweedie exponential dispersion model densities. 

Statistics and Computing 2005; 15: 267-280. 

Guisan A, Edwards TC, Hastie T. Generalized linear and generalized additive models in studies 

of species distributions: setting the scene. Ecol. Modell. 2002; 157: 89–100. 

Hastie T, Tibshirani R. Generalized additive models. London: Chapman and Hall; 1990. 

Tweedie MCK. An index which distinguishes between some important exponential families. 

Statistics: Applications and New Directions. Calcutta: Indian Statistical Institute. 



 4 

Proceedings of the Indian Statistical Institute Golden Jubilee International Conference 

(Eds. J. K. Ghosh and J. Roy) 1984; pp. 579-604.  

Wood SN. Generalized Additive Models: An Introduction with R (2nd edition). Chapman and 

Hall/CRC; 2017. 

Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of 

semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 

2011; 73:3 -36. 


