
Supplementary Material627

1 Likelihood Derivation628

1.1 Formulas for Likelihood Related Functions629

Ak =

√
(λk − µk − ψk)

2 + 4λkψk, (19)

Bk =
(1− 2 (1− ρk) pk−1(tk−1))λk + µk + ψk

Ak
(20)

pk(t) =
λk + µk + ψk − Ak

eAk(t−tk−1)(1+Bk)−(1−Bk)
eAk(t−ti−1)(1+Bk)+(1−Bk)

2λk
(21)

qk(t) =
4eAk(t−tk−1)

(eAk(t−tk−1)(1 +Bk) + (1−Bk))
2 (22)

g1 = eAk(t−tk−1) · (1 +Bk) + (1−Bk) (23)

g2 = Ak(1−
2(1−Bk)

g1
) (24)

g3 = 1− 2 (1− ρk)Pk−1(tk−1) (25)
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1.2 Implementation Algorithm:630

Detailed algorithm for likelihood calculation is shown below based on the equations listed in631

Section 2.2 of the main text and from the section above.632

Algorithm 1: Likelihood Calculation

1 Initialize: p0(t0) = 1
2 for k = 0, . . . , K − 1 do

/* Intermediate quantities */

3 Load the value of pk(tk)
4 Calculate Ak+1, Bk+1 via Equation (19), (20)
5 for j = 0, . . . ,mk+1 − 1 do
6 Calculate qk+1(sj+1) via Equation (22)
7 if sj+1 is a serial sampling event then
8 Calculate pk+1(sj+1) via Equation (21)
9 end

10 if j < mk+1 − 1 then
11 Calculate Ik(Ej) via Equation (2)
12 end

13 end
14 Calculate and store pk+1(tk+1) via Equation (21)

15 end
/* Likelihood */

16 Calculate P[T | λ,µ,ψ,ρ, r, t] via Equation (1)
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2 Gradient Derivation633

2.1 For ∂ logPk(j)
∂θk

:634

∂qk(t)

∂θk
=

8eAk(t−tk−1)((t− tk−1)
∂Ak
∂θk

(1
2
· g1 − eAk(t−tk−1) · (1 +Bk))

g31

−
∂Bk
∂θk

(eAk(t−tk−1) − 1))

g31

(26)

∂Ak
∂θk

=



λk−µk+ψk
Ak

, If θ = λ

−λk+µk+ψk
Ak

, If θ = µ

λk+µk+ψk
Ak

, If θ = ψ

0, If θ = ρ

(27)

∂Bk

∂θk
=


2λkpk−1(tk−1)

Ak
, If θ = ρ

Ak·g3−
∂Ak
∂θk

·(g3·λk+µk+ψk)
A2
k

, Otherwise

635

∂pk(t)

∂θk
=



1
2λ2k

(−µk − ψk − λk
∂g2
∂λk

+ g2), If θ = λ

−Ak
λk

((1−Bk)(eAk(t−tk−1)−1)+g1) ∂Bk∂ρk

g21
, If θ = ρ

1
2θk

(1− ∂g2
∂θk

), Otherwise

(28)

636

∂Qk(sj+1, sj)

∂θk
=

1

qk (sj+1)

∂qk (sj+1)

∂θk
− 1

qk(sj)

∂qk(sj)

∂θk
(29)

∂g2
∂θk

=
dAk
dθk

− 2

g21
·

(
g1

{
dAk
dθk

(1−Bk)−
dBk

dθk
· Ak

}

−
(
eAk(t−tk−1)

∂Ak
∂θk

(1 +Bk) · (t− tk−1) + (eAk(t−tk−1) − 1)
∂Bk

∂θk

)
· Ak(1−Bk)

)
(30)
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2.2 For ∂ logPk(j)
∂θk−i

(i is an integer smaller than k):637

∂qk(t)

∂θk−i
= −

8eAk(t−tk−1) ∂Bk
∂θk−i

(eAk(t−tk−1) − 1)

g31
(31)

∂Bk

∂θk−i
=

∂Bk

∂pk−1 (tk−1)
· ∂pk−1 (tk−1)

∂θk−i
=

−2 (1− ρk)λk
Ak

∂pk−1 (tk−1)

∂θk−i
(32)

∂pk(t)

∂θk−i
= −Ak

λk

(
(1−Bk)(e

Ak(t−tk−1) − 1) + g1
)

∂Bk
∂θk−i

g21
(33)

∂Qk(sj+1, sj)

∂θk−i
=

1

qk (sj+1)

∂qk (sj+1)

∂θk−i
− 1

qk(sj)

∂qk(sj)

∂θk−i
(34)
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2.3 Implementation Algorithm:638

We implement a recursive algorithm to compute the necessary gradient of the log-likelihood639

within our rate parameter space. Intermediate quantities are stored in between epochs to640

alleviate computational burden. Detailed algorithm is shown below based on the equations641

listed in 2.5 and previous sections in the supplement.

Algorithm 2: Gradient Calculation

1 Initialize: p0(t0) = 1
2 for k = 0, . . . , K − 1 do

/* Intermediate quantities */

3 if k == 0 then
4 Calculate ∂A1

∂θ1
, ∂B1

∂θ1
using p0(t0) via Equation (27), (2.1)

5 end
6 else if k ≥ 1 then

7 Load the values of {∂pk(tk)
∂θi

}ki=1

8 Calculate ∂Ak+1

∂θk+1
, {∂Bk+1

∂θi
}k+1
i=1 using {∂pk(tk)

∂θi
}ki=1 via Equation (27), (2.1), (32)

9 end

10 Calculate and store {∂pk+1(tk+1)

∂θi
}k+1
i=1 using {∂Bk+1

∂θi
}ki=1 via Equation (28), (33)

/* Gradient */

11 Calculate {∂ log Pk(j)
∂θi

}ki=1 via Equations (11)-(18) in Section 2.5

12 end

642

3 Prior distributions for EBDS models643

3.1 HIV dynamics in Odesa, Ukraine644

We refer to the prior settings on the compound parameters from previous work [1], and try to645

roughly match their priors by adopting the following prior distributions on each of the rate646

parameters. Note that the sampling proportion was fixed to 0 before the first sampling date647

in their study, so we also set the sampling rate to 0 for the last two epochs for consistency.648
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Parameter Prior Role
λ Lognormal (Mean = 0.85, SD = 1.0) Birth rate
µ Lognormal (Mean = −0.25, SD = 1.0) Death rate
ψ Lognormal (Mean = −9.0, SD = 0.50) Serial sampling rate
tor Uniform (Lower = 19, Upper = 60) Age of phylogeny

Table A: Prior specifications for the EBDS model in HIV virus analysis

3.2 Seasonal Influenza in New York State649

We follow the same framework for setting the priors for the GMRF-based model as in Section650

3.3. Similarly, the prior distribution for the constant death rate is acquired by estimating651

the credible range for the duration of the infectious period according to reports by Centers652

for Disease Control and Prevention [2], with 95% confidence intervals encompassing 6 to 11653

days. Comprehensive information regarding the specific prior distributions is shown in the654

following table:655

Parameter Prior Role
λ∗1 Normal (Mean = 3.08, SD = 1.17) Log-scale birth rate at present
µ∗
k Normal (Mean = 3.82, SD = 0.16) Log-scale death rate for all epochs
ψ∗
1 Normal (Mean = −0.77, SD = 1.17) Log-scale sampling rate at present

tor Normal (Mean = 12.5, SD = 15.0) Age of phylogeny
α Fixed to 2.0 Exponent of the MRF
ϕ Gamma (Shape = 1.0, Scale = 1.0) Transformed global scale of the MRF
νk Fixed to 1.0 Local scale of MRF

Table B: Prior specifications for the EBDS model in Influenza virus analysis

3.3 Ebola epidemic in West Africa656

We assume a constant death rate, µ for this data set, and we employ an empirical Bayes657

approach proposed by Magee et al. (2020) to set the prior on the first log-birth-rate and658

log-sampling-rate in our Bayesian bridge MRF models [3]. The prior for the constant death659

rate is obtained from an estimation of the plausible duration of infectious period with 95%660

confidence intervals covering 8 to 40 days [4]. The detailed prior distributions can be found661

in the table below:662
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Parameter Prior Role
λ∗1 Normal (Mean = 1.26, SD = 0.58) Log-scale birth rate at present
µ∗
k Normal (Mean = 3.02, SD = 0.41) Log-scale death rate for all epochs
ψ∗
1 Normal (Mean = 1.27, SD = 0.58) Log-scale sampling rate at present

tor Normal (Mean = 1.89, SD = 15.0) Age of phylogeny
α Fixed to 0.25 Exponent of the MRF
ϕ Gamma (Shape = 1.0, Scale = 1.0) Transformed global scale of the MRF
νk Exponentially tilted stable distributions Local scale of Bayesian bridge MRF
ξ Fixed to 2.0 Slab width of Bayesian bridge MRF

Table C: Prior specifications for the EBDS model in Ebola virus analysis

4 Additional efficiency metrics663

Run time (hours) Minimum ESS/state
MH-MCMC HMC MH-MCMC HMC HMC Speedup

HIV (10 epochs) 1.25× 101 5.12× 10-2 8.00× 10-7 8.21× 10-4 1.03× 103

Influenza (78 epochs) 8.23× 102 1.04× 101 2.35× 10-8 4.83× 10-6 2.06× 102

Ebola (24 epochs) 3.77× 101 2.97× 100 1.22× 10-6 3.43× 10-5 2.81× 101

Table D: Relative speedup in terms of effective sample size (ESS) per MCMC chain-state
comparing HMC over MH-MCMC and required run time to reach a minimum ESS > 200
across all EBDS model rates for all three examples
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5 Inferred trajectories for birth/death/sampling rates664

2 3

2 2

2 1

20

21

22

23

Bi
rth

 R
at

e

2 3

2 2

2 1

20

21

22

De
at

h 
Ra

te

Pa
st

19
94

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
16

20
19

2 14

2 12

2 10

2 8

Sa
m

pl
in

g 
Ra

te

(a)

(b)

(c)

Figure A: HIV virus: Median (solid line) and 95% credible intervals indicated by the shaded areas
of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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Figure B: Influenza virus: Median (solid line) and 95% credible intervals indicated by the shaded
areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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Figure C: Ebola virus: Median (solid line) and 95% credible intervals indicated by the shaded
areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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6 Computational complexity of the nodewise likelihood665

The computational complexity of evaluating node-based representations of the likelihood is666

much less explicit. First, we need to write out an equivalent expression for the likelihood667

of Equation 1 node-wise. It will be helpful to distinguish different types of samples. In668

particular, let us denote serially-sampled tips ūψ with a particular serially-sampled tip being669

ūψi. With a slight abuse of notation, let us denote intensively-sampled tips ūρ, with ūρi670

denoting the vector of intensively-sampled tips at the ith intensive-sampling event. Then we671

can write672

P[T | λ,µ,ψ,ρ, r, t] = log(qK(tor)(tor)) +

 ||v||∑
i=1

log(λk(vi)) + log(qk(vi)(vi))

+

||ūψ ||∑
i=1

log(ψk(ūψi)) + log(rk(ūψi) + (1− rk(ūψi))pk(ūψi)))− log(qk(ūψi)(ūψi))

+

(
K∑
i=1

||ūρi|| log(ρi) + (L(ti−1)− ||ūρi||) log((1− ρi)qi−1(ti−1))+

||ūρi|| log(ri + (1− ri)pi−1(ti−1))

)
(35)

The complexity here is not immediately apparent for a number of reasons. For one,673

the complexity appears to depend on the relative proportion of samples of different types,674

which affects the number of values of pk(t) and qk(t) which must be computed. Importantly,675

the complexity of computing those pk(t) and qk(t) is not immediately apparent either, and676

that these costs are somewhat hard to disentangle, as pk(ti) builds recursively on pk−1(ti)677

and qk(t) depends on pk(t).678

6.1 Node lookups679

Regardless of such ambiguities, all nodes in the tree require an interval lookup. For births, the680

lookup is required to find the correct λk term to use. For samples, the lookup is either to find681
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the appropriate sampling rate, for serial samples, or to determine to which intensive-sampling682

event a sample belongs, for intensive samples. The time requirement here depends on the683

algorithm, for a binary search it is O(log(K)), making the total lookup cost O(N log(K)).684

6.2 How many computations of qk(t) are required?685

In the worst, but most common, case, there are no intensive-sampling events and qk(t) must686

be computed for the times of all samples, all births, and all epoch times (note that even when687

ρi is 0, there is a term L(ti) log(qi−1(ti)) which must be computed in the final summation).688

In the best case, all samples are at intensive-sampling events, and qk(t) only needs to be689

computed for the times of all births and all epoch times. These are both O(N +K), though690

there is a factor of two’s worth of variation in front of the N depending on which side of this691

spectrum a tree falls in. Calling the cost of computing qk(t) Q, this makes the contribution692

to the complexity here O(Q(N +K)).693

6.3 How many computations of pk(t) are required?694

The likelihood contains a number of explicit computations of pk(t) in the terms pertaining to695

(both serially- and intensively-)sampled tips. When all samples are serial samples, there are696

O(N) direct computations of pk(t), while when all samples are intensive samples, there are697

O(K). Taking the cost of computing pk(t) to be P , the addition to the cost here is between698

O(PN) and O(PK).699

6.4 What is the cost of computing pk(t) and qk(t)?700

We have thus far shown that the cost of computing the nodewise likelihood appears to be701

between O(N log(K) +Q(N +K) + PN) and O(N log(K) +Q(N +K) + PK). But this is702

not particularly revealing without considering P and Q.703

While qk(t) depends on pl:l<k(t) throughA andB, once Ak and Bk have been computed,704
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let us assume (as we did when evaluating the cost of the interval-wise likelihood) that the705

cost of qk(t) is O(1). In other words, let us assume that O(Q(N+K)) = O(P (N+K)). This706

makes the implied cost of the nodewise likelihood between O(N log(K) +P (N +K) +PN)707

and O(N log(K) + P (N + K) + PK), which both simplify to O(N log(K) + P (N + K)).708

Näıvely, we might choose to compute pk(t) recursively every time we need it, which is O(K2).709

In this case, the implied cost of the nodewise likelihood is O(N log(K) +NK +K2)).710

6.5 Precomputing A and B711

One can instead choose to pre-compute Ak, Bk, as once these are computed the cost to712

compute pk(t) and qk(t) becomes O(1). Working backwards from the present allows re-713

computation to be avoided. As we did when we approximated the cost of the interval-wise714

likelihood, we will take the cost of the update (computing (Ak, Bk) from (Ak−1, Bk−1)) to715

be O(1). Thus, the cost of the precomputation is O(K). This puts the implied cost of716

computing the nodewise likelihood between O(N log(K) +N +K).717

6.6 Counting lineages at epoch times718

Regardless of whether the model includes intensive-sampling (that is, regardless of whether719

ρ = 0), one must compute L(ti) for all epoch times. This can be solved essentially the same720

way as the subintervals are obtained, at a cost of O(N +N log(N)). Alternately, it can be721

obtained by counting the number of births and sampled tips older (or younger) than each722

epoch time, at a cost of O(KN). This makes the lower end of the computational cost once723

again a range, from O(NK +N log(K) +N +K) to O(N log(K) +N log(N) +N +K).724

In practice, the constants in front of all the sorting and node-lookup terms appear to be725

so small as to be unnoticeable in real-world computation. We demonstrate this in our timing726

experiments in the next section. Thus, for all practical purposes, the likelihood appears to727

be O(N + K) regardless of representation, as long as one avoids recursive computation of728

pk(t).729
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7 Timing Experiments730

With the reformulation of the likelihood and derivation of the analytical gradients, our731

method notably gains in speed, as we highlight in this section. For a comprehensive as-732

sessment, we compare our approach with four other specialized packages for EBDS model733

inference concerning likelihood calculations. These include the BDSKY [5] package within734

BEAST2 [6], TreePar [5] package in R [7] and RevBayes [8]. Furthermore, we present a735

benchmark comparing the gradient calculation efficiency of automatic differentiation imple-736

mented in VBSKY [9] package using JAX library [10] isolated from the variational inference737

procedure against our algorithm based analytical gradients implemented in BEAST.738

To assess the scalability of the aforementioned methods in terms of likelihood/gradient739

calculation, we simulated a set of trees under the EBDS model with increasing number of740

tips. To investigate the scalability of different methods wrt the number of sequences, we fix741

the number of epochs to 5 for both likelihood and gradient calculation.742

Regarding scalability with respect to the number of epochs, we adjust the model by743

progressively increasing the number of epochs. To keep other variables constant, we maintain744

the tree topology and set the number of tips at 12 (in scenarios whereK >> N , this allows us745

to negate the effect of N in O(N+K)) for likelihood computation. For gradient calculations,746

we set the number of tips to 8198 (to minimize the impact of K2 in O(NK +K2)).747

For methods that employ just-in-time (JIT) compilation, including BEAST, BEAST2748

and VBSKY, we run a short MCMC chain or variational inference algorithm to compute749

likelihood or gradient across 100,000 iterations and take the average run time.750
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In our analysis, we observe that for likelihood computations, the implementations in751

BEAST, BEAST2, and RevBayes offer similar speed performance when adjusting both the752

number of sequences and epochs. In contrast, the TreePar package consistently lags, being753

several hundred times slower than its counterparts across all tested scenarios. It is also754

the sole implementation that exhibits a quadratic scaling with the number of epochs. The755

algorithms of BEAST, BEAST2, and RevBayes seem to demonstrate approximately linear756

scaling relative to both tree size and model epochs. It’s worth noting that RevBayes delivers757

the quickest calculation speed, which might be attributed to the inherent speed advantages758

of precompiled codes, particularly for quick likelihood calculations in our context. Result for759

TreePar with epochs exceeding than 512 is not not included as TreePar fail to process such760

large models.761
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In terms of gradient calculations, our analytical gradients deployed within BEAST762

is remarkably faster than VBSKY approach using automatic differentiation. The gradient763

computation scales approximately linearly with the number of sequences for both BEAST764

and VBSKY. However, while this linearity persists for BEAST wrt an increasing number of765

epochs, VBSKY shows a departure from linear scaling. Notably, the run time for the VBSKY766

method escalates from 0.02 seconds with 400 epochs to 0.04 seconds with 450 epochs. We767

further confirm that the runtime slowness exhibited in VBSKY is not due to memory issues768

or JIT compilation difficulty. However, without the ability to modify or closely examine769

the automatic differentiation library employed by VBSKY, identifying the specific causes770

of this non-linear scaling remains out of reach. Therefore, our analysis demonstrates that771

analytically calculating the gradients of the EBDS likelihood is critical for improving the772

running time of gradient based methods.773

8 XML specification for the EBDS model using HMC sampler774

BEAST data, likelihood, prior and sampling specification relies on extensive markup lan-775

guage (XML) elements. Comprehensive instructions for incorporating XML elements to-776
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gether to drive BEAST are provided in the How-to Guides on the BEAST community web-777

site https://beast.community/. In the instructions here, we address the construction and778

use of XML elements for the EBDS model and HMC transition kernels, which are the key779

components for the application of the results presented in this study.780

The EBDS model XML elememt is specified as follows:781

<newBirthDeathSerialSampling id="bdss" units="years" hasFinalSample="false"782

conditionOnSurvival="false">783

<birthRate >784

<parameter idref="bdss.birthRate"/>785

</birthRate >786

<deathRate gradientFlag = "false">787

<parameter idref="bdss.deathRate"/>788

</deathRate >789

<samplingRate >790

<parameter idref="bdss.samplingRate"/>791

</samplingRate >792

<samplingProbability gradientFlag = "false">793

<compoundParameter id="bdss.samplingProbability">794

<parameter id="samplingAtPresent" value="0" dimension="1" lower="0.0" upper=795

"1.0"/>796

<parameter id="otherSampling" value="0" dimension="DIM - 1" lower="0.0"797

upper="1.0"/>798

</compoundParameter >799

</samplingProbability >800

<treatmentProbability gradientFlag = "false">801

<parameter id="bdss.treatmentProbability" value="1.0" dimension="DIM" lower="0.0802

" upper="1.0"/>803

</treatmentProbability >804

<origin >805

<parameter id="bdss.origin" value="ORIGIN TIME" lower="0.0"/>806

</origin >807

<cutOff >808

<parameter value="CUT OFF TIME"/>809

</cutOff >810

<numGridPoints >811

<parameter value="DIM"/>812

</numGridPoints >813

</newBirthDeathSerialSampling >814

The option conditionOnSurvival controls whether the model conditions on the sur-815

vival of at least one individual at the present time. Note that if we remove the compound pa-816

rameter declarations, we need to set the initial parameter values for birthRate, deathRate,817

and samplingRate in this EBDS model block. Users can refer to the XML files for HIV818

examples in our provided Github repository to make the corresponding changes. For our819

analyses, we assume no intensive sampling events at the epoch switching times, so we set820
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the samplingProbability at other times to be 0. Users can modify this parameter to value821

between 0 and 1 to incorporate these intensive sampling events. We need to input a starting822

value for parameter origin which matches the length of the starting phylogeny or the fixed823

tree. The parameter cutOff governs the end point of our last epoch and numGridPoints824

specifies the number of epochs. The current setup of this XML block assumes equidistant825

epoch switching times. Users can modify the grid points by adding additional parameter826

grids in this EBDS model block. To illustrate, in our HIV example, we have:827

<grids>828

<parameter value="0 3 6 8 10 12 14 16 18 25"/>829

</grids>830

Following the incorporation of XML elements for the selected prior distributions and831

models pertinent to joint phylogeny inference, we can shift our focus to the transition kernel832

or “operator” element. This block contains a unique operator, the hamiltonianMonteCar-833

loOperator, differing from standard operators in that it requires a jointGradient object834

instead of a typical parameter object. BEAST internally retrieves the parameter from its835

gradient object. As we are dealing with gradients with respect to several different param-836

eters, we can define compoundGradient elements as needed in advance. Specifically, we837

define the compound gradient using two new elements: the gradient element for thr priors838

and the speciationLikelihoodGradient element for EBDS model parameters. A sample839

HMC operator element is shown below.840

The implementation of HMC necessitates user specification of two critical parameters:841

the step size stepSize, and the number of steps nSteps. Notably, BEAST features intrin-842

sic auto-tuning capabilities, facilitating parameter tuning during active analysis. We can843

enable this measure by specifying autoOptimize=“true” and declaring a value for targe-844

tAcceptanceProbability. We also include a preconditioner element here which is not845

mandantorily required for HMC. However, as highlighted in the main text, preconditioning846

the mass matrix based on the Hessian of the log-prior significantly improves the efficiency847

of our HMC sampler. Removing this element leads to a standard HMC transition kernel,848
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utilizing an identity matrix as the mass matrix. Finally, we can add in more operators in849

this element for other parameter of interests, that are not supported by HMC sampler.850

<hamiltonianMonteCarloOperator weight="1" nSteps="15" stepSize="0.01" mode="vanilla"851

drawVariance="1.0" autoOptimize="true" targetAcceptanceProbability="0.7"852

preconditioningUpdateFrequency="3" preconditioningDelay="0">853

<jointGradient >854

<compoundGradient idref="grad.bdssIncrements.likelihood"/>855

<compoundGradient idref="grad.bdss.prior"/>856

</jointGradient >857

<preconditioner >858

<compoundPriorPreconditioner id="priorPreconditioner">859

<normalDistributionModel idref="birthRateAtPresentPriorDistribution"/>860

<bayesianBridgeDistribution idref="birthRateDeltaPrior"/>861

<normalDistributionModel idref="deathRateAtPresentPriorDistribution"/>862

<bayesianBridgeDistribution idref="deathRateDeltaPrior"/>863

<normalDistributionModel idref="samplingRateAtPresentPriorDistribution"/>864

<bayesianBridgeDistribution idref="samplingRateDeltaPrior"/>865

</compoundPriorPreconditioner >866

</preconditioner >867

</hamiltonianMonteCarloOperator >868
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