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Appendix A: Fourier expansion of Brownian motion

By the definition of an Itô integral, within a time interval [0, T ] a standard Brownian motion can
be written as [1, 2]:

Wt =

∫ t

0
dWs =

∫ T

0
I[0,t](s)dWs, (1)

where I[0,t](·) is the indicator function. Suppose {ϕi}∞i=1 is a complete orthonormal basis of L2[0, T ].
We can interpret I[0,t] as an element of L2[0, T ], and expand it in terms of the basis functions:

I[0,t](s) =
∞∑
i=1

〈
I[0,t](·), ϕi(·)

〉
ϕi(s)

=
∞∑
i=1

(∫ t

0
ϕi(u)du

)
ϕi(s).

(2)

Substituting (2) into (1) we see that:

Wt =
∞∑
i=1

(∫ T

0
ϕi(s)dWs

)∫ t

0
ϕi(u)du. (3)

Appendix B: Adaptive MCMC

In an adaptive MCMC algorithm optimal values of the proposal density is learnt on the fly using past
samples from the Markov chain. Different mechanisms can be used to adapt or learn the parameters
of the proposal. [3] proposed a general framework for constructing adaptive MCMC algorithms that
rely on the stochastic approximation method [4] for learning the proposal’s parameters on the fly.

Consider in general the proposal density qϕ(θ
j+1|θj) parameterised by ϕ. Let us also define a

suitable objective function

h(ϕ) := Eϕ
[
H(ϕ,θ0,θ1, . . . ,θj ,θj+1)

]
, (4)

that expresses some measure of the statistical performance of the Markov chain in its stationary
regime. The expectation is with respect to a ϕ dependent distribution. For example, the coerced
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acceptance probability is often used as the objective:

H(ϕ,θ0,θ1, . . . ,θj ,θj+1) = min

{
1,
π(θj+1)

π(θj)

qϕ(θ
j |θj+1)

qϕ(θj+1|θj)

}
︸ ︷︷ ︸

=:αj+1

−ᾱ, (5)

where π(θ) is the target distribution and ᾱ is the approximate optimal expected acceptance proba-
bility in the stationary regime. For the Gaussian proposal q := N (θj+1|θj ,Σj), with its parameter
ϕ being the covariance Σj , the following objective function:

H(Σj ,θj+1) = θj+1θj+1
′
−Σj , (6)

corresponds to matching the moments of the proposal with that of the target. Here by a
′
we denote

the transpose of the vector a.
Optimal exploration of π(θ) can thus be formulated as finding the root ϕ̄ of the following

equation: h(ϕ) = 0. The challenge here is to devise an algorithm to find the roots of h(ϕ),
which involves both integration and optimisation. [3] suggested using the stochastic approximation
method [4] which is tailored to this situation:

ϕj+1 = ϕj + δj+1H(ϕj ,θ0,θ1, . . . ,θj ,θj+1)

= ϕj + δj+1h(ϕ) + δj+1H(ϕj ,θ0,θ1, . . . ,θj ,θj+1)− δj+1h(ϕ)

= ϕj + δj+1h(ϕ) + δj+1ξj+1,

(7)

where ξj+1 :=
[
H(ϕj ,θ0,θ1, . . . ,θj ,θj+1)− h(ϕ)

]
is usually referred to as the noise term and δj is

a decreasing sequence (a step-size parameter). If the noise term ξj+1 averages to zero as j → ∞,
the above recursion will converge to the root ϕ̄ (or at least oscillate around it) when the following
conditions hold:

∞∑
j=0

δj = ∞ and

∞∑
j=0

(δj)2 <∞. (8)

Combining the above objective functions and using the stochastic approximation we have the fol-
lowing recursions for adapting a random-walk proposal with a global scaling λj , N (θj+1|θj , λjΣj),
as [3]:

log(λj+1) = log(λj) + δj+1(αj+1 − ᾱ)

µj+1 = µj + δj+1(θj+1 − µj)

Σj+1 = Σj + δj+1(θj+1θj+1
′
−Σj),

(9)

where the recursion in the first equation, trying to adapt the global scaling, is based on the coerced
accepted probability objective in (5) and the following two equations are minimising the moment
matching objective in (6).

By choosing a decreasing sequence {δj}∞j=0 of step-sizes it is ensured that the adaptation declines
over time, also known as vanishing adaptation [3], and the Markov chain converges to the correct
stationary distribution. For all the experiments we have consistently used the following schedule:

δj = j−0.6, (10)

which was shown to work particularly well for nonlinear differential equation models in [5].

2



Appendix C: Simulation study for influenza epidemic

Using a real dataset we are oblivious to the ground truth of the estimated quantities. Thus, we have
also carried out a detailed simulation study where we have used simulated datasets that mimic the
influenza epidemic used in the main text. We generated three simulated epidemics using the model
in Eq (2), in the main text, on the same time period T = 14 days, and used the same population
size N = 763, as the real influenza epidemic. We chose parameter values that generate an epidemic
curve similar to the real dataset. These generative parameter values are shown in Figure 1–3. We
then proceed to fit the two alternative models using the inferential setup discussed in the main
text.
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Figure 1: Simulated dataset 1: Posterior marginal densities of the parameters obtained using
the SDE and the SA (with n = 15 basis function). These densities are summarised using a kernel
density estimate. The black line in each of the plots indicate the generative parameter value.

In Figure 1–3 we compared the marginal densities of the parameters obtained using the SDE
and SA counterparts, for each of the simulated datasets. Clearly the estimates match well and
generative parameter values are recovered.

Furthermore, in Figure 4–6 we compared the goodness-of-fit. As was found for the real dataset,
we observed little disagreement between the epidemic curves obtained using the SDE and the SA,
but for the posterior distribution of the latent diffusion paths we noticed, for all the datasets, that
the credible intervals are narrower for the SA. For all these datasets, the posterior means, and the
draws of the sample path, of the two models match well.
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Figure 2: Simulated dataset 2: Posterior marginal densities.

Appendix D: Calculating a time-varying reproduction number

The estimate of the contact-rate βtk,r is used to derive an estimate of a time-varying reproduction
number. Firstly, using the formula of [6], the initial reproduction number R0,r is estimated as
follows:

R0,r = ψrdI

(
ψrdL
2 + 1

)2

1− 1(
ψrdI

2
+1

)2

. (11)

Over time the value of the reproduction number will change as contact patterns shift and the
supply of susceptible individuals deplete. The time-t reproduction number is then estimated using
the following formula:

Rtk,r =

R0,r
R∗
tk,r

R∗
0,r

if tk < tlock

βtk,rR0,r
R∗
tk,r

R∗
0,r

if tk ≥ tlock
(12)

where tlock indicates the time-point corresponding to the lockdown. R∗
tk,r

is the dominant eigenvalue
of the time tk next-generation matrix, Λk,r, with elements:

(Λk,r)ij = Sr,tk,iC
tk
r,ijdI , (13)

where Ctk
r,ij is a region-specific time-varying contact matrix, see [7] for further details on these

matrices.
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Figure 3: Simulated dataset 3: Posterior marginal densities.

(a) (b)

(c) (d)

Figure 4: Simulated dataset 1: Goodness-of-fit (a); posterior distribution of the latent diffusion
paths corresponding to the SDE and SA counterparts (b), with densities summarised by the mean
(solid lines) and 95% credible intervals (broken lines); and samples from the posterior distribution
of the latent diffusion paths, SDE (c) and SA (d)

To get an ‘all England’ value for Rtk,E a weighted average of the regional Rtk,r is calculated,
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(a) (b)

(c) (d)

Figure 5: Simulated dataset 2: Comparison of the goodness-of-fit

(a) (b)

(c) (d)

Figure 6: Simulated dataset 3: Comparison of the goodness-of-fit

where the weights are given by the sum of the infections in each region:

Rtk,E =

∑
r Rtk,r

∑
i∆

infec
r,tk,i∑

r

∑
i∆

infec
r,tk,i

. (14)

Appendix E: Priors for the COVID-19 model

The priors for the global and regional parameters for the COVID-19 model are listed in Table 1.
We used the same priors as was used in [7]. Note that we also used the same prior for the volatility
of both the piecewise constant random-walk and the Brownian motion model of the transmission-
potential.
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Table 1: Model parameters with assumed prior distributions or fixed values, as was used in [7].
Name Prior source

Over-dispersion, η Uninformative Gamma(1, 0.2).
Mean infectious period, dI 2 + Gamma(1.43, 0.549).
Infection-fatality rate for age < 5: p1 Beta(1, 62110.8012).
Infection-fatality rate for age, 5− 14: p2 Beta(1, 23363.4859).
Infection-fatality rate for age 15− 24: p3 Beta(1, 5290.0052).
Infection-fatality rate for age 25− 44: p4 Beta(1, 1107.6474).
Infection-fatality rate for age 45− 64: p5 Beta(1, 120.9512).
Infection-fatality rate for age 65− 74: p6 Beta(1, 31.1543).
Infection-fatality rate for age > 74: p7 Beta(9.5, 112).
Serological test sensitivity, ksens Beta(71.5, 29.5).
Serological test specificity, kspec Beta(777.5, 9.5).
Exponential growth, ψr Gamma(31.36, 224).
Log of initial infectives, log I0,r N (−17.5, 1.252).
Volatility of transmission-potential, σβw , σβt Gamma(1, 100).

Mean latent period, dL 3 days (fixed not estimated).

Appendix F: Pseudocode of the MwG algorithm

The pseudocode listed in Algorithm 1 describes the Metropolis-within-Gibbs algorithm for sampling
from the posterior distribution p(θg,θ1, . . . ,θnr |yd,ys) of the global θg and regional θ1, . . . ,θnr
parameters of the COVID-19 model. For each parameter group θg,θ1, . . . ,θnr we use a proposal
with a different set of parameters that are adapted through the mechanism described in (9).

Appendix G: Goodness-of-fit as per regions of England

In Figure 10 – 16 we show the posterior predictive distributions of the number of deaths and the
posterior distribution of the latent infection for each region respectively. We have aggregated the
results across ages.

Appendix H: Maximum mean discrepancy

For any given probability distribution P on a domain X its kernel embedding is defined as µP =
EX∼Pk(·,θ) [8], an element of reproducing kernel Hilbert space H associated with a positive definite
kernel function k : X ×X → R. Such an embedding exists for any P whenever k is bounded. Given
two probability distributions P and Q the maximum mean discrepancy (MMD) is the Hilbert space
distance between their kernel embedding µP and µQ. Considering that we have two set of samples
{Xi}ni=1 and {Yi}mi=1 from corresponding distributions P and Q respectively, then the MMD between
P and Q is given by [9]

MMD2(P,Q) = ||µP − µQ||H

=
1

n(n− 1)

n∑
i=1

m∑
j ̸=i

k(Xi, Xj) +
1

m(m− 1)

n∑
i=1

m∑
j ̸=i

k(Yi, Yj)−
2

nm

n∑
i=1

m∑
j=1

k(Xi, Yj).

(15)
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Algorithm 1 A random-scan adaptive Metropolis-within-Gibbs sampler

Input: Number of iterations J ; data yd,ys; optimal acceptance rate ᾱ.
Initialise the regional θ0

1, . . . ,θ
0
nr

and global parameters θ0
g.

Initialise the regional proposal parameters λ01, . . . , λ
0
nr
, µ0

1, . . . ,µ
0
nr

and Σ0
1, . . . ,Σ

0
nr
.

Initialise the global proposal’s parameters λ0g, µ
0
g and Σ0

g.
for j = 0 to J − 1 do

Global move:

1. Draw θ∗
g ∼ N (θj

g, λ
j
gΣ

j
g) and set θj+1

g = θ∗
g with probability αj+1

g = min
{
1,

p(θ∗
g|y

d,ys)

p(θg|yd,ys)

}
, other-

wise θj+1
g = θj

g.

Regional move:

1. Draw r∗ ∼ Uniform(1, nr).

2. Draw θ∗
r∗ ∼ N (θj

r∗ , λ
j
r∗Σ

j
r∗) and set θj+1

r∗ = θ∗
r∗ with probability αj+1

r∗ = min
{
1,

p(θ∗
r∗ |y

d,ys)

p(θj
r∗ |y

d,ys)

}
,

otherwise θj+1
r∗ = θj

r∗ .

3. Set θj+1
nr\r∗ = θj

nr\r∗ , where the symbol A \ a denotes all elements of the set A except a.

Adaptation:

1. Adapt global proposal’s parameters:

log(λj+1
g ) = log(λjg) + δj+1(αj+1

g − ᾱ)

µj+1
g = µj

g + δj+1(θj+1
g − µj

g)

Σj+1
g = Σj

g + δj+1(θj+1
g θj+1

′

g −Σj
g).

2. Adapt proposal’s parameters for region r∗:

log(λj+1
r∗ ) = log(λjr∗) + δj+1(αj+1

r∗ − ᾱ)

µj+1
r∗ = µj

r∗ + δj+1(θj+1
r∗ − µj

r∗)

Σj+1
r∗ = Σj

r∗ + δj+1(θj+1
r∗ θj+1

′

r∗ −Σj
r∗).

3. Set λj+1
nr\r∗ = λjnr\r∗ , µ

j+1
nr\r∗ = µj

nr\r∗ and Σj+1
nr\r∗ = Σj

nr\r∗ .

end for
Output: {θj

g,θ
j
1, . . . ,θ

j
nr
}J−1
j=0 .

The MMD2(P,Q) = 0 iff P = Q, following the properties of kernel embedding. The kernel
embedding captures all the necessary information about a distribution [8], thus the distance between
two embedding would naturally highlight the discrepancy more efficiently in the tail regions of the
distributions under comparison. In this paper we used an exponentiated quadratic kernel given by

k(X,X ′) = exp
( ||X −X ′||2

ρ2

)
, (16)

where ρ is a hyperparameter. We set ρ to the median distance among the samples.
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Appendix I: Considering overdispersion while fitting the influenza
dataset

In section 4 (main text) while fitting to the influenza dataset we considered a Poisson likelihood
model, for both the SA and SDE variants, given by Eq (14) and Eq (15) respectively. Such a
likelihood model formulation ignores overdispersion in the measurement process. Interestingly, not
allowing for overdispersion in the measurement process may lead to the compensation of variability
in the observations through spurious changes in the transmission-potential. We noticed in Figure 3
(b) (main text) that there is a noticeable increase in xt, and thus transmission-potential. In order
to rule out such increase as something spurious, we re-fit both the SA and SDE variants, in this
section, using a negative binomial likelihood. More specifically, we consider the following likelihood
models for the SDE:

yti |θ,x,X0 ∼ NegBin(Iti , η), i = 1, . . . ,m, (17)

where η is an overdispersion parameter such that Eyti = Iti and Var (yti) = Iti (1 + η), and the SA:

yti |θ,Z,X0 ∼ NegBin(Iti , η). (18)

We retained all the experimental setting as was used in section 4 and carried out inference,
while additionally estimating the overdispersion parameter η. We placed a Gamma(2, 5) prior on
η.

(a) (b)

(c) (d)

Figure 7: Considering a negative binomial likelihood for fitting the influenza dataset:
Goodness-of-fit (a); posterior distribution of the latent diffusion paths corresponding to the SDE
and SA counterparts (b), with densities summarised by the mean (solid lines) and 95% credible
intervals (broken lines); and samples from the posterior distribution of the latent diffusion paths,
SDE (c) and SA (d)

In Figure 7 we show the goodness-of-fit and the posterior distribution of the latent diffusion’s
sample path. In Figure 8 we plot the posterior distribution of the parameters. The main difference
that we noticed, in comparison to the Poisson likelihood model, is that the Poisson likelihood model
produced a closer fit (see Figure 3 (a) in main text) to the observation on the 9-th day, for both
the SA and SDE variants. Importantly, both the Poisson and negative binomial likelihood models
picked-up the increase in the transmission-potential between the 6-th and the 9-th day.
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Figure 8: Considering a negative binomial likelihood for fitting the influenza dataset:
Posterior marginal densities of the parameters.

Appendix J: Further details of the SIRS model parameters

We used the following parameter and initial values, following [10], to generate the simulated dataset:
1/µ = (50 ∗ 365), 1/α = (7 ∗ 365), 1/γ = 14, β0 = 0.65, β1 = 0.4, β2 = −0.2, N = 10000,
S0 = 600, I0 = 30. We placed the following prior for the estimated parameters and initial values:
β0 ∼ U(0.1, 0.7), σ ∼ U(0, 0.06), 1/α ∼ N (2555, 1202), 1/γ ∼ N (14, 1.052), S0 ∼ U(500, 700),
I0 ∼ U(27, 60).

In Figure 9 we plot the posterior distribution of the parameters.
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Figure 9: SIRS model: Posterior marginal densities of the parameters.
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(a)

(b)

Figure 10: Goodness-of-fit of daily death data (a) and the inferred latent infections (b), produced
using the random-walk (magenta lines) and SAd (orange lines) for the region East of England.
These densities are summarised by the mean (solid lines) and 95% credible intervals (broken lines).
The black line indicates the day of lockdown in England 23rd March, 2020.
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(a)

(b)

Figure 11: Goodness-of-fit of daily death data (a) and the inferred latent infections (b) for the
region North West.
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(a)

(b)

Figure 12: Goodness-of-fit of daily death data (a) and the inferred latent infections (b) for the
region Midlands.
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(a)

(b)

Figure 13: Goodness-of-fit of daily death data (a) and the inferred latent infections (b) for the
region London.
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(a)

(b)

Figure 14: Goodness-of-fit of daily death data (a) and the inferred latent infections (b) for the
region North East and Yorkshire.
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(a)

(b)

Figure 15: Goodness-of-fit of daily death data (a) and the inferred latent infections (b) for the
region South East.
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(a)

(b)

Figure 16: Goodness-of-fit of daily death data (a) and the inferred latent infections (b) for the
region South West.
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