In this notebook，we calculate the local selection gradient for our model with assortative interactions studied in Section B． 3 in the appendix．These calculations are used to produce Equation（B．14），which， in turn，is used to calculate the evolutionarily stable sociality strategy for a given assortment probabil－ ity ρ ．
First，we introduce the equilibrium level of contagion I＿M for the rare mutant population with sociality strategy corresponding to reproduction number M for the good contagion，given the resident level of sociality strategy with reproduction number R for the good contagion．This expression was calculated in the adaptive dynamics limit for the good contagion in Equation（B．12）and for the bad contagion in Equation（B．13）．

ImMinus $\left[M_{-}, R_{-}, \rho_{-}\right]:=$

$$
\frac{1}{2 M \rho}\left(-1-M+2 M \rho-\sqrt{\left(-1-M+2 M \rho+\frac{M}{R}-\frac{M \rho}{R}\right)^{2}+4 M \rho\left(M-M \rho-\frac{M}{R}+\frac{M \rho}{R}\right)}+\frac{M}{R}-\frac{M \rho}{R}\right)
$$

Next，we compute the Cobb－Douglas utility for the mutant population given the equilibrium levels of the good and bad contagion．

```
Utility[M_, R_, 的, 和, c_] :=
    \alpha Log[ImMinus[M, R, \rho]] + (1 - 人) Log[1 - ImMinus[c M, c R, \rho]]
```

To calculate the local selection gradient, we first differentiate the utility for mutant individuals with respect to the mutant reproduction number M, given a fixed resident reproduction number R.

D[Utility[M, R, $\rho, \alpha, \mathrm{c}]$, M]

$$
\begin{aligned}
& \left(2 \mathrm { M } \alpha \rho \left(\frac { 1 } { 2 \mathrm { M } \rho } \left(1-\frac{1}{\mathrm{R}}-2 \rho+\frac{\rho}{\mathrm{R}}-\left(4 \mathrm{M} \rho\left(1-\frac{1}{\mathrm{R}}-\rho+\frac{\rho}{\mathrm{R}}\right)+\right.\right.\right.\right. \\
& \left.2\left(-1+\frac{1}{R}+2 \rho-\frac{\rho}{R}\right)\left(-1-M+\frac{M}{R}+2 M \rho-\frac{M \rho}{R}\right)+4 \rho\left(M-\frac{M}{R}-M \rho+\frac{M \rho}{R}\right)\right) / \\
& \left.\left(2 \sqrt{ }\left(\left(-1-M+\frac{M}{R}+2 M \rho-\frac{M \rho}{R}\right)^{2}+4 M \rho\left(M-\frac{M}{R}-M \rho+\frac{M \rho}{R}\right)\right)\right)\right)-\frac{1}{2 M^{2} \rho} \\
& \left.\left.\left(-1+M-\frac{M}{R}-2 M \rho+\frac{M \rho}{R}-\sqrt{R}\left(\left(-1-M+\frac{M}{R}+2 M \rho-\frac{M \rho}{R}\right)^{2}+4 M \rho\left(M-\frac{M}{R}-M \rho+\frac{M \rho}{R}\right)\right)\right)\right)\right) / \\
& \left(-1+M-\frac{M}{R}-2 M \rho+\frac{M \rho}{R}-\sqrt{\left(-1-M+\frac{M}{R}+2 M \rho-\frac{M \rho}{R}\right)^{2}+4 M \rho\left(M-\frac{M}{R}-M \rho+\frac{M \rho}{R}\right)}\right)+ \\
& \left((1 - \alpha) \left(-\frac{1}{2 \mathrm{~cm} \rho}\left(\mathrm{c}-\frac{1}{\mathrm{R}}-2 \mathrm{c} \rho+\frac{\rho}{\mathrm{R}}-\left(4 \mathrm{~cm} \rho\left(\mathrm{c}-\frac{1}{\mathrm{R}}-\mathrm{c} \rho+\frac{\rho}{\mathrm{R}}\right)+2\left(-\mathrm{c}+\frac{1}{\mathrm{R}}+2 \mathrm{c} \rho-\frac{\rho}{\mathrm{R}}\right)\right.\right.\right.\right. \\
& \left.\left(-1-c M+\frac{M}{R}+2 c M \rho-\frac{M \rho}{R}\right)+4 c \rho\left(c M-\frac{M}{R}-c M \rho+\frac{M \rho}{R}\right)\right) / \\
& \left.\left(2 \sqrt{ }\left(\left(-1-c M+\frac{M}{R}+2 c M \rho-\frac{M \rho}{R}\right)^{2}+4 c M \rho\left(c M-\frac{M}{R}-c M \rho+\frac{M \rho}{R}\right)\right)\right)\right)+ \\
& \frac{1}{2 c M^{2} \rho}\left(-1+c M-\frac{M}{R}-2 c M \rho+\frac{M \rho}{R}-\int\left(\left(-1-c M+\frac{M}{R}+2 c M \rho-\frac{M \rho}{R}\right)^{2}+\right.\right. \\
& \left.\left.\left.4 \subset M \rho\left(\operatorname{cM}-\frac{M}{R}-c M \rho+\frac{M \rho}{R}\right)\right)\right)\right) / \\
& \left(1-\frac{1}{2 c M \rho}\left(-1+c M-\frac{M}{R}-2 c M \rho+\frac{M \rho}{R}-\int\left(\left(-1-c M+\frac{M}{R}+2 c M \rho-\frac{M \rho}{R}\right)^{2}+\right.\right.\right. \\
& \left.\left.\left.4 \subset M \rho\left(c M-\frac{M}{R}-c M \rho+\frac{M \rho}{R}\right)\right)\right)\right)
\end{aligned}
$$

To further calculate the local selection gradient, we evaluate the derivative of the mutant utility with respect to mutant reproduction number M for the case in which the mutant and resident reproduction numbers coincide ($M=R$). This allows us to see whether utility will increase or decrease for a mutant with sociality strategy near the resident sociality strategy.

$$
\begin{aligned}
& \mathrm{D}[\text { Utility }[\mathrm{M}, \mathrm{R}, \rho, \alpha, \mathrm{c}], \mathrm{M}] / .\{\mathrm{M} \rightarrow \mathrm{R}\} \text { // FullSimplify } \\
& \frac{1}{\mathrm{R}}\left(-\frac{\alpha\left(\mathrm{R}+\sqrt{(\mathrm{R}-\rho)^{2}}+\rho-2 \mathrm{R} \rho\right)}{\sqrt{(\mathrm{R}-\rho)^{2}}\left(2+\sqrt{(\mathrm{R}-\rho)^{2}}-\rho+\mathrm{R}(-1+2 \rho)\right)}+\right. \\
& \\
& \left.\frac{(-1+\alpha)\left(\rho+\sqrt{(-\mathrm{cR}+\rho)^{2}}+\mathrm{c}(\mathrm{R}-2 \mathrm{R} \rho)\right)}{\sqrt{(-\mathrm{cR}+\rho)^{2}}\left(2-\rho+\sqrt{(-\mathrm{c} R+\rho)^{2}}+\mathrm{cR}(-1+4 \rho)\right)}\right)
\end{aligned}
$$

We can simplify the expression for the local selection gradient using the fact that reproduction numbers for the good contagion always satisfy $R>=1$. In addition, we will assume that $c R>\rho$, which simplifies our expression. This second assumption is justified if we restrict attention to cases in which the socially optimal sociality strategy is achieved at a critical point of the monomorphic utility function (i.e. R_\{opt $\}$ > $1 / \mathrm{c}$, which occurs when $\mathrm{c}>1-\alpha$).

Fullsimplify[

$$
\begin{aligned}
& -\frac{1}{2 R}\left(\frac{-2+c R+\rho+\sqrt{(-c R+\rho)^{2}}}{\sqrt{(-c R+\rho)^{2}}}+\alpha\left(-1-\frac{2}{\sqrt{(R-\rho)^{2}}}+\frac{2}{\sqrt{(-c R+\rho)^{2}}}-\frac{c R+\rho}{\sqrt{(-c R+\rho)^{2}}}\right)\right), \\
& \{R-\rho>0, c R-\rho>0\}] \\
& \frac{\frac{\alpha}{R-\rho}+\frac{(-1+c R)(-1+\alpha)}{c R-\rho}}{R} \\
& \frac{\frac{\alpha}{R-\rho}+\frac{(-1+c R)(-1+\alpha)}{c R-\rho}}{R}
\end{aligned}
$$

In the next two steps, we simplify the expression for the local selection gradient to obtain the formula presented in Equation (B.14) in the appendix.

$\frac{R-c R^{2}-R \alpha+c R \alpha+c R^{2} \alpha-\rho+c R \rho-c R \alpha \rho}{R(R-\rho)(c R-\rho)}$
Collect $\left[\mathrm{R}-\mathrm{c} \mathrm{R}^{2}-\mathrm{R} \alpha+\mathrm{cR} \alpha+\mathrm{c} \mathrm{R}^{2} \alpha-\rho+\mathrm{c} \mathrm{R} \rho-\mathrm{cR} \alpha \rho, \mathrm{R}\right] /(\mathrm{R}(\mathrm{R}-\rho)(\mathrm{c} \mathrm{R}-\rho))$
$\frac{\mathrm{R}^{2}(-\mathrm{c}+\mathrm{c} \alpha)-\rho+\mathrm{R}(1-\alpha+\mathrm{c} \alpha+\mathrm{c} \rho-\mathrm{c} \alpha \rho)}{\mathrm{R}(\mathrm{R}-\rho)(\mathrm{cR}-\rho)}$
Next, we set the selection gradient equal to zero to calculate the evolutionarily stable sociality strategy for a given assortment probability ρ. We can use the fact that the numerator of the selection gradient is
a decreasing function of R to see that the positive root (listed second) is the unique ESS.

$$
\begin{aligned}
& \text { Solve }\left[\frac{\frac{\alpha}{R-\rho}+\frac{(-1+c \mathrm{C})(-1+\alpha)}{\mathrm{CR}-\rho}}{\mathrm{R}}=0, \mathrm{R}\right] \\
& \left\{\left\{\mathrm{R} \rightarrow \frac{1}{2(-\mathrm{C}+\mathrm{c} \alpha)}\left(-1+\alpha-\mathrm{c} \alpha-\mathrm{c} \rho+\mathrm{c} \alpha \rho-\sqrt{4(-\mathrm{C}+\mathrm{c} \alpha) \rho+(1-\alpha+\mathrm{c} \alpha+\mathrm{c} \rho-\mathrm{c} \alpha \rho)^{2}}\right)\right\},\right. \\
& \left.\quad\left\{\mathrm{R} \rightarrow \frac{1}{2(-\mathrm{c}+\mathrm{c} \alpha)}\left(-1+\alpha-\mathrm{c} \alpha-\mathrm{c} \rho+\mathrm{c} \alpha \rho+\sqrt{4(-\mathrm{C}+\mathrm{c} \alpha) \rho+(1-\alpha+\mathrm{c} \alpha+\mathrm{c} \rho-\mathrm{c} \alpha \rho)^{2}}\right)\right\}\right\}
\end{aligned}
$$

Introducing shorthand to calculate the regions in which the local selection gradient is positive or negative (given assortment probability ρ).

$$
\begin{aligned}
& G\left[R_{-}, p_{-}, c_{-}, \alpha_{-}\right]:= \\
& -\frac{1}{2 R}\left(\frac{-2+c R+\rho+\sqrt{(-c R+\rho)^{2}}}{\sqrt{(-c R+\rho)^{2}}}+\alpha\left(-1-\frac{2}{\sqrt{(R-\rho)^{2}}}+\frac{2}{\sqrt{(-c R+\rho)^{2}}}-\frac{c R+\rho}{\sqrt{(-c R+\rho)^{2}}}\right)\right)
\end{aligned}
$$

Plot of regions in which local selection gradient is increasing (filled in blue) and decreasing (filled in orange) depending on the resident sociality reproduction number R and the assortment probability ρ. The boundary between the regions corresponds to the ESS sociality strategy. In first plot, we consider case in which $\mathrm{c}=1 / 2$, so the ESS with no assortative interactions ($\rho=0$) features more interactions than experienced by the socially optimal sociality strategy.

In second plot, we consider case in which $\mathrm{c}=2$, so the ESS with no assortative interactions ($\rho=0$) features fewer interactions than experienced by the socially optimal sociality strategy.

