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1 Visualizing backfill

In this section, we provide some visualization of backfill/reporting delay in the exemplar datasets
for dengue fever in Puerto Rico and seasonal influenza in the United States. In Figure A, we
compare the number of cases initially reported and reported after 1 week to the validation
case counts for both dengue fever and national influenza-like illness (ILI) data. Figure B
demonstrates the large difference in reporting errors between the 2017-2018 season and the 2018-
2019 season for Vermont, indicating that use of past-season data to estimate reporting factors
for the 2018-2019 season may result in suboptimal performance for Vermont. This problem is
not limited to Vermont. Figure C shows the average estimated π̂(0) (i.e., the proportion of
eventually-reported validation cases reported initially) for the “current” 2018-2019 season and
for the previous two seasons for each state. While Vermont has by far the largest difference
in π̂(0) between seasons, many other states also had large differences in reporting practices
between seasons. Naturally, this will negatively impact the performance of methods that use
past-season data to estimate reporting factors in the 2018-2019 season.
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Figure A: Comparing initially reported and validation case counts for Puerto Rico dengue
fever and US national influenza-like illness 1

(a) Puerto Rico dengue fever data, 2000-2008
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(b) National US Influenza, 2010-2011 to 2018-2019 seasons
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1 In all plots, the highest (black) curve corresponds to validation case counts. The lowest (red) curve corresponds
to the cases initially reported (lag = 0)
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Figure B: Reported ILI cases in Vermont for each calendar week in the 2017-2018 and 2018-
2019 flu seasons1
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1 Data for Vermont ILI cases were downloaded on June 13th, 2021. Lines correspond to the first 35 calendar
weeks in the corresponding flu season.
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Figure C: Estimated proportion of validation cases initially reported by state using data from
the 2018-2019 season and data from the previous two seasons1
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1 Data were downloaded on June 13th, 2021. Results from the current season may be viewed as the “truth” here,
but data analysis and forecasting is conducted using estimates from the previous two seasons (except for local
lag-based estimation).
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2 Summary of notation

Table A provides a summary of the notation used throughout the paper.

Table A: Summary of key notation

Notation Definition
s indexes seasons
t indexes weeks within each season
d indexes number of weeks since initial report for season s and week t

also referred to as “lag”, where lag = 0 refers to the first official report
Nts(∞) observed validation data for season s and week t

Nts(d) data reported as of the (d+ 1)th report for season s and week t
i.e, data from the dth data revision for season s and week t
Nts(0) corresponds to the first data report for season s and week t

nts(d) nts(d) = Nts(d)−Nts(d− 1) for d ≥ 1 and nts(0) = Nts(0).

Ñts the most recently-reported case counts for season s and week t
Nts(∞) random variable corresponding to the validation data for season s and week t

Nts(∞) is the data realization of this random variable

Nts(d) random variable corresponding to the dth data revision for season s and week t
Nts(d) is the data realization of this random variable

πts(d) the average proportion of validation cases that are reported by lag week d
= E(Nts(d)/Nts(∞))

τ value of d such that we assume πts(d) = 1 for all d > τ
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3 Modeling available cases with an offset

Reframing results in the actuarial literature using our notation, we assume that the incremental
cases reported for week t in season s on lag week d follow a Poisson distribution with mean as
follows:

E(nts(d)) = ydE(Nts(∞))

for all d > 1 such that yd represents the average number of incremental cases for lag d, relative
to the expected number of validation cases, E(Nts(∞)) [1]. Actuarial literature usually assumes
that the number of reported cases is non-decreasing across lag weeks such that yd > 0 for all
d ≥ 0 and

∑∞
k=0 yk = 1. We define the development factor λd as follows

λd =

∑d
k=0 yk∑d−1
k=0 yk

=
π(d)

π(d− 1)
,

where y0 = π(0) and yd = π(d)− π(d− 1).
It can be shown ([1]) that these assumptions imply that nts(d)|Nts(d−1) is distributed such

that

E(nts(d)|Nts(d− 1)) =
yd

π(d− 1)
Nts(d− 1) = [λd − 1]Nts(d− 1)

V ar(nts(d)|Nts(d− 1)) =
ydπ(d)

[π(d− 1)]2
Nts(d− 1) = λd [λd − 1]Nts(d− 1).

We emphasize that this variance expression requires λd > 1 (so, π(d) > π(d− 1)) for all d > 1
in order to produce sensible variance estimates. We can equivalently express the mean and
variance of the cumulative cases as follows:

E(Nts(d)|Nts(d− 1)) = λdNts(d− 1) (Eq a)

V ar(Nts(d)|Nts(d− 1)) = λd [λd − 1]Nts(d− 1)

for all d > 1. Following England and Verrall (2002) [2], we have that

E(Nts(d)|Nts(0)) = E(E(Nts(d)|Nts(d− 1))|Nts(0)) = . . . =

[
d∏

k=1

λk

]
Nts(0)

V ar(Nts(d)|Nts(0)) =
d∏

k=1

λk

[
d∏

k=1

λk − 1

]
Nts(0).

Using that Nts(0) has a Poisson distribution with mean y0E(Nts(∞)), we then have that
E(Nts(d)) = π(d)E(Nts(∞)) and that

V ar(Nts(d)) = E(V ar(Nts(d)|Nts(0))) + V ar(E(Nts(d)|Nts(0)))

=
d∏

k=1

λk

[
d∏

k=1

λk − 1

]
E(Nts(0)) +

[
d∏

k=1

λk

]2

V ar(Nts(0))

= π(d)

[
π(d)

π(0)
− 1

]
E(Nts(∞)) +

π(d)2

π(0)
E(Nts(∞))

= π(d)E(Nts(∞))

[
2

[
π(d)

π(0)

]
− 1

]
. (Eq b)

All of this is to say that Nts(d) will follow a distribution with mean π(d)E(Nts(∞)) and
variance proportional to π(d)E(Nts(∞)). It may reasonable, therefore, to approximate the
distribution of Nts(d) using an over-dispersed Poisson or negative binomial distribution with
mean E(Nts(d)) = π(d)E(Nts(∞)).

Suppose that we are interested in modeling the validation case counts Nts(∞) using a model
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structure with a log link. Then this implies the following mean model structure for the available
counts

log(E(Nts(d)) = log(E(Nts(∞))) + log(π(d)). (Eq c)

This follows the same mean structure as the model for the validation case counts but includes
an offset, log(π(d)). This mean model structure and modeling strategy are very closely related
to the approach used in McGough et al. (2020) [3], which modeled incremental cases rather
than cumulative cases as follows:

log(E(nts(d)) = log(E(Nts(∞))) + log(yd).

The above model in McGough et al. (2020) [3] requires that yd > 0 for all d. However, the
model structure in Eq c can be applied to model cumulative cases as long as π(d) > 0 for all d,
albeit without the variance structure justification in Eq b. This greatly expands the scenarios
in which the model structure in Eq c can be applied, allowing the method to be implemented
in settings with over-reporting of cases (i.e., λd < 1 for some d) in addition to under-reporting.

Alternative modeling strategies discussed in the actuarial literature [e.g. 2;4] involve ap-
proximating the distribution of Nts(d)|Nts(d − 1) with a normal distribution with mean and
variance as in Eq a or assuming some other distributional approximation such as a log-normal
distribution. In the main paper, we consider ARMA modeling of log-cumulative case counts,
where the mean structure of the model follows Eq c.
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4 Obtaining multiple imputations for validation case counts

4.1 Multiple imputation prior to disease modeling

One strategy for handling reporting delay proposed in the main paper involves imputing missing
validation case counts given the observed data. In this section, we provide some motivation for
the distributional assumptions made for this imputation. As discussed in England and Verrall
(2002) [2] and following Eq a, we can express the moments of the distribution for Nts(∞)|Nts(d)
as:

E(Nts(∞)|Nts(d)) =

∞∏
k=d+1

λkNts(d) =
Nts(d)

π(d)

V ar(Nts(∞)|Nts(d)) =

[
1

π(d)

] [
1− π(d)

π(d)

]
Nts(d) =

[
1− π(d)

π(d)

]
E(Nts(∞)|Nts(d))

in the setting where π(d) ≤ 1 for all d (i.e., reporting error is from under-reporting). Given
an estimate of E(Nts(∞)|Nts(d)) and allowing for a more general reporting delay mechanism
that may vary by s and/or t, we propose approximating the distribution of Nts(∞) using the
following truncated normal distribution:

Nts(∞)|Nts(d) ∼ TruncNormal
(
Nts(d)

πts(d)
,
1− πts(d)

πts(d)2
Nts(d); l, u

)
, (Eq d)

where truncation limits l = Nts(d) and u =∞ restrict imputed values to be greater than Nts(d).
The key to this imputation distribution is that it is centered near the expected validation value
and its variability generally decreases as πts(d) increases. Therefore, the variability of the im-
putations decreases as the expected proportion of eventually reported cases being currently
reported increases. To implement imputation using Eq d , we will replace unknown πts(d) with
an estimate. This results in so-called “improper” imputations that do not account for uncer-
tainty in the estimation of πts(d) [5]. However, we do not expect this to result in much loss of
forecast coverage in practice unless the amount of estimation error for πts(d) is very large.

As an aside, we note that the expectation of Nts(∞)|Nts(d) from a truncated normal dis-

tribution will not be Nts(d)
πts(d) . In Figure E, we show the percent bias between the expectation of

the trucated normal distribution in Eq d and Nts(d)
πts(d) as a function of the observed case counts

Nts(d) and πts(d). We expect this bias to be generally small, but we could modify the center of

the truncated normal distribution to have expectation exactly equal to Nts(d)
πts(d) .

When we have that πts(d) > 1, we propose the following modified normal distribution, which
has a variance structure with similar properties as in Eq d :

Nts(∞)|Nts(d) ∼ Binomial
(
Nts(d),

1

πts(d)

)
or ∼ TruncNormal

(
Nts(d)

πts(d)
,
πts(d)− 1

πts(d)2
Nts(d); l, u

)
,

where truncation limits l = −∞ and u = Nts(d) restrict imputed values to be less than Nts(d).
Using one of the above imputation distributions, we generate M versions of the complete

corrected validation data as shown in Figure D. We then fit the disease model of interest to
each of the M complete validation datasets and obtain M forecasts (e.g., 1-week forecasts),
denoted µ̂1, . . . , µ̂M . Let v1, . . . , vM represent the corresponding variance estimates for these
forecasts. We can obtain a single forecast estimate and corresponding variance using Rubin’s
combining rules [5] as follows:

µ̂ =
1

M

M∑
m=1

µ̂m Var(µ̂) = VW +

(
1 +

1

M

)
VB
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where VW =
1

M

M∑
m=1

vm and VB =
1

M − 1

M∑
m=1

[µ̂m − µ̂]2 .

In this expression, VW represents the average forecast variance within each imputed dataset and
VB captures the variability in forecasts across imputed datasets.

Figure D: Diagram of Multiple Imputation Algorithm

Figure E: Percent error between truncated normal expectation and E(Nts(∞)|Nts(d))
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4.2 Imputation within MCMC algorithm for Bayesian forecast models

A primary limitation of the above approach is that it requires the forecast model to be fit
multiple times. For many slow estimation methods, this may not be feasible. When the target
model involves Markov Chain Monte Carlo (MCMC) estimation, however, a simple alternative
is to handle the missing data within the estimation algorithm, where a single imputed value for
each missing Nts(∞) is generated for each iteration of the MCMC algorithm. Parameters are
then drawn within that iteration conditioning on the imputed validation data. The resulting
posterior forecast distributions can then be used directly.

In a joint modeling framework, the distribution used to impute Nts(∞) is calculated using
the combination of the forecast model (distribution of Nts(∞)) and a model relating Nts(d) to
Nts(∞). For this second component, we model the distribution for Nts(d)|Nts(∞). Using similar
logic as in Eq d above and assuming that πts(d) ≤ 1, we can approximate this distribution as
follows:

Nts(d)|Nts(∞) ∼ TruncNormal (πts(d)Nts(∞), [1− πts(d)]πts(d)Nts(∞); l, u) (Eq e)

or ∼ Binomial(Nts(∞), πts(d)),

where l = 0 and u = Nts(∞) and where the second expression is based on the relationship
between Binomial and Normal distributions and assumes that 0 < πts(d) ≤ 1 for all d (i.e., no
over-reporting of disease). This second distribution is also used in Hohle et al. (2014) [6]. In
the setting where πts(d) > 1, we propose modeling the observed data as follows:

Nts(d)|Nts(∞) ∼ TruncNormal (πts(d)Nts(∞), [πts(d)− 1]πts(d)Nts(∞); l, u) , (Eq f )

where l = Nts(∞) and u =∞.
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5 Forecasting models

In this section, we describe the two forecasting models we use in the main paper. Crucially,
the reporting delay methods can be applied to many forecasting model structures beyond those
explored here.

5.1 Inferno Gaussian process model for case counts

Osthus (2020) [7] proposes a Bayesian strategy for modeling weighted influenza-like illness
(wILI) rates (scaled and population-weighted case counts) reported by ILInet. This approach
results in substantially faster computation relative to usual Bayesian modeling of these data
due to the pre-estimation of many model parameters prior to Bayesian Markov Chain Monte
Carlo (MCMC) estimation.

Let w̃ts denote a random variable with the most recently-reported wILI value for week t in
season s as its data realization. The model is as follows:

w̃ts|α, θts ∼ Beta(αθts, α(1− θts))
logit(θts) = γt + δts

δts|µs,Σ ∼ GP (µs1,Σ)

µs|σ2
µ ∼ N(0, σ2

µ)

Σi,i = σ2
Σ

Σi,j 6=i = φσ2
Σ exp−λ(i− j)2

where GP denotes a Gaussian process. Parameters λ, α, σ2
µ, and σ2

Σ are all scalar parameters
greater than 0, and φ is a scalar parameter between 0 and 1. If we also specify a prior distribution
for γt, this model could be fit directly to the observed data. However, the large number of
parameters in each γt and δts may make estimation slow. Instead, Osthus (2020) [7] proposes to
pre-estimate some of the model parameters (α, γ, σ2

µ, σ2
Σ, λ, φ, and µs and δts for past seasons)

based on past season historical data and only estimate a small number of parameters using the
current season’s data. This substantially reduces the computational burden of estimation, since
we are then only estimating µs and δts using data from the current season.

This model is intended to be applied for wILI ỹts between 0 and 1. We adapt this model
structure for the context where the outcome of interest is the raw case counts rather than a
scaled and weighted version. In particular, we propose the following model structure:

Ñts|α, θts ∼ NegBin(α, α/(α+ θts))

log(θts) = γt + δts

E(Ñts|α, θts) = θts V ar(Ñts|α, θts) =
θts(θts + α)

α

where Ñts is a random variable with the most recent case count for week t and season s as its
data realization. We define distributions of all hyperparameters as in Osthus (2020) [7]. The
key changes between the proposed model and the model in Osthus (2020) [7] is in the assumed
distribution for the observed outcome and in the link function used to model the mean of the
outcome. The parameter pre-estimation step also needs to be modified accordingly.

Here, we describe how we obtain pre-estimates for the various (modified) Inferno model
parameters using historical data. For this estimation, we only consider the historical validation
data. We perform the following estimation steps:

1. Estimate θ: Define β̂ts to be a three-week moving average of the validated counts, Nts(∞)
for s corresponding to past seasons. Let ω̂t be the average of Nts(∞)/β̂ts across prior seasons.
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Define θ̂ts = max
(
β̂tsω̂t, c

)
where c is some pre-specified minimum value. In our data analysis

and simulations, we use c = 0.005.

2. Estimate α: We assume Ñts follows a negative binomial distribution with mean θ̂ts and
unknown parameter α. Using the historical validation data, we maximum the log-likelihood
corresponding to the negative binomial distribution as a function of α to obtain an estimate of
α.

3. Estimate γt and δts: We estimate γ̂t as the average of log(θ̂ts) across s. We obtain
δ̂ts = log(θ̂ts)− γ̂t.

4. Estimate σ2
µ: We estimate µ̂s as the mean of δ̂ts for each season. σ̂2

µ is the estimated
variance of µ̂s across seasons.

5. Estimate Σ: We estimate σ̂2
Σ as the variance of δts across all t and s. We assume that

vector δs|µs follows a multivariate normal distribution with mean µ̂s and variance Σ, which
is a function of parameters λ and φ. Using the estimated δ̂ts, we maximize the multivariate
normal log-likelihood as a function of λ and φ to obtain corresponding estimates. Combined,
this provides an estimate for Σ.

Given these pre-estimates, we can then apply a Bayesian MCMC algorithm to estimate
the remaining parameters (δts) corresponding to the current season. When accounting for re-
porting delay using the rescaling method, we fit this model on a rescaled version of the current
season data, and this rescaling would occur prior to MCMC estimation. When implementing the
mean model offset method, we modify the above mean model to log(θts) = γt + δts + log(π̂ts(d))
where log(π̂ts(d)) is a fixed offset. Parameter pre-estimation is not impacted. To implement the
imputation strategy, we can add a step within each iteration of the MCMC estimation algorithm
in which we impute the validation data. Inferno model parameters are then drawn, conditional
on the imputed validation data. In this paper, we implement the MCMC estimation using the
rjags package in R and instead specify a model for Nts(d)|Nts(∞) as in Eq e or Eq f .

5.2 ARMA model for log-case counts

We also model the data using an ARMA(p,q) model as follows:

xts = c+

p∑
i=1

φixt−i,s +

q∑
i=1

θiεt−i,s + εts, εts ∼ N(0, σ2), (Eq g)

where xts is the log of the most recently-reported case data for week t and season s and where
εt−i,s = xt−i,s−xt−i−1,s is the increment in log-counts for week t− i. In our implementation, we
added 0.1 to each case count to avoid log-of-zero problems. When implementing the mean model
offset method, we add log(π̂ts(d)) as an offset in the mean structure above. The imputation
method is implemented by fitting the ARMA model and obtaining forecasts for each of 10
imputed datasets. Results are then aggregated across multiple imputations as described in
Section 4. ARMA models are usually fit using maximum likelihood or least squares methods
and can be easily implemented with most modeling software.
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6 Application to dengue fever and ILI data

6.1 Regression-based reporting factor estimation

In this section, we describe how we used a regression model to indirectly estimate the reporting
factors and provide diagnostics assessing the reasonableness of this model.

We posit a Poisson regression model structure for Nts(∞) with a log link as follows:

log(θts) = β0 + β1spline1 + β2spline2 + β3spline3 (Eq h)

+ β4I(d = 0) + β5I(d = 1) + β6I(d = 2) + β7I(d = 3) + β8I(d = 4) + β9I(d = 5)

+ β10s+ log (Nts(d) + 0.001)

where θts is the expectation of Nts(∞) given the predictors used in the model, where spline1,
spline2, and spline3 collectively represent a 3-degree natural spline of t, and where the 0.001
was added in the offset to avoid log-of-zero errors. We note that these β parameters are defined
differently than in Supp. Section 5.1. For each calendar week, we estimated parameters in
this model using the data on Nts(d) and Nts(∞) for all t and s in the previous two years and
all d available, excluding data from the last 6 weeks (dengue fever and simulations) or last 16
weeks (influenza-like illness).

We decided to include s as a continuous variable in this model to allow for seasonal trends
such as improved reporting for more recent seasons. While this model is fit using the past two
years of data, this will included data from at least two seasons, allowing the corresponding
parameter to be estimated. A continuous rather than a categorical version of s is used in the
model to improve current season predictions early in the current season, where the model would
be fit only using past season data and no current season data.

For simplicity, we evaluate the goodness-of-fit of this model using the entire time series of
available data for each disease. Figure F shows the regression model predictions for πts(d)
compared to the observed ratio between Nts(d) and Nts(∞). Note that this is evaluating these
estimates in the model’s training set. For influenza-like illness, we see that the model is able to
do a pretty good job of estimating these inverse reporting factors in general. For the dengue
fever data, the model has a harder time determining the values for πts(1), the second report
produced for week t in season s. For other lag weeks, however, the model does a reasonable job
at recovering the true inverse reporting factors.
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Figure F: Comparison of regression model estimates of πts(d) from Eq. 7 based on historical
real-time case reporting and the observed values of πts(d) = Nts(d)/Nts(∞) for national US ILI
and for dengue fever in Puerto Rico.1
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1 Model-based estimates of πts(d) are obtained by fitting the regression model in Eq h to historical reporting
data, excluding the most recent 16 weeks (ILI) or the most recent 6 weeks (dengue fever) from the estimation.
Values along the black line indicate model-based estimates of πts(d) that closely align with observed values of
πts(d).
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6.2 Nowcast and forecast performance

In this section, we provide some additional results on forecast performance from the data anal-
ysis. Figure G provides aggregate method performance in terms of forecast weighted interval
scores. Figure H provides boxplots of the nowcast and forecast errors across all weeks and
seasons for each dataset. This figure is useful for comparing the presence of large error outliers
for each of the methods. Figures I and J provide a visualization of the forecast accuracy
across individual weeks for each dataset, where a larger filled portion of the vertical axis cor-
responds to greater accuracy (i.e., lower forecast error) for that method, relative to the other
methods. These figures demonstrate that the performance of simple analysis of the observed
data without correction tends to improve when case counts are very low for dengue fever. We
also see improvements in the relative performance of uncorrected analysis in the US national
ILI data just after peaks in the validation cases.

Figure O shows the comparative accuracy between modeling based on real-time data and
modeling based on validation data in terms of 1 week forecasts. Surprisingly, Inferno modeling
based on real-time data does a better job at forecasting 1 week ahead than Inferno based on
validation data in the setting where the true number of validation cases is lower than expected.
In 2000, for example, the season peak was later than in prior seasons, and Inferno based on
validation data tended to over-forecast the case counts in the coming weeks. In contrast, Inferno
based on real-time data is biased toward zero due to reporting delay, which resulted in better
1 week forecasts in the setting where validation case counts were unexpectedly low.

Figure L provides the relative rankings of the various methods for forecasting state-level
ILI levels in the 2018-2019 season. Accuracy for individual weeks are plotted for several states
in Figure K.

Figure G: Weighted interval scores of forecasts in the Puerto Rico dengue fever and national
US influenza-like illness data across all weeks1
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Figure H: Boxplots of performance metrics across all weeks
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Figure I: Relative accuracy (1/absolute prediction error, scaled across methods) of 1 week
ahead forecasts across rolling 5 week window for US National ILI1
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1 Results based on absolute prediction error for 5 week rolling window centered at plotted week. Results for 35
weeks per season are shown. The black line represents observed validation case counts for each week.
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Figure J: Relative accuracy (1/absolute prediction error, scaled across methods) of 1 week
ahead forecasts across rolling 5 week window for Puerto Rico dengue fever1
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1 Results based on absolute prediction error for 5 week rolling window centered at plotted week. Results for 50
weeks per season are shown. The black line represents observed validation case counts for each week.
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Figure K: Relative accuracy (1/absolute prediction error, scaled across methods) of 1 week
ahead forecasts across rolling 5 week window for state-level ILI in 2018-2019 season1
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1 Results based on absolute prediction error for 3 week rolling window centered at plotted week. Results for 35
weeks per state are shown.
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Figure L: State-level ILI: Proportion of 50 weeks in which each of 7 methods performs best in
terms of nowcasts and 1-week forecast weighted interval scores (ARMA model)
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Figure M: Forecast bias and weighted interval scores for 3 weeks just before and just after
season peak and for 3 weeks surrounding the season minimum/valley1

(a) Average bias in nowcasts and forecasts

 7541.2

 4114.7

 3043.9

 4097.3

 4268.3

 4244.3

 7434.1

 3700.0

 4439.2

 3716.8

 3890.6

 3508.6

 9098.4

 4920.9

 3694.6

 4863.6

 6022.0

 4621.8

10239.7

 5116.1

 6938.6

 5074.8

 5247.3

 4526.6

11519.0

 5495.9

10517.0

 5342.3

 5636.9

 4590.1

10164.2

11059.7

10919.5

11598.0

11098.5

10487.8

  637.6

  599.1

  912.4

  553.9

  559.2

  577.6

  592.6

  549.5

 1708.0

  593.5

  623.7

  467.1

 1571.6

 1155.3

 1950.9

 1295.6

 1297.1

 1966.6

 2811.0

 1454.9

 2956.8

 1489.4

 1436.2

 1197.1

 5064.0

 3963.0

 4050.3

 4057.4

 3963.4

 3708.1

 5960.6

 5130.0

 4725.1

 5200.3

 5143.7

 4975.7

 6943.9

 2641.5

 6194.2

 2643.9

 2595.9

 1935.8

12123.6

 6635.8

11220.8

 6664.1

 6633.6

 5953.1

10846.0

 9214.1

10852.0

 9448.7

 9439.3

 8685.7

  667.0

  330.5

 1109.6

  335.1

  338.0

  151.2

  760.0

  448.2

 1219.1

  476.5

  449.5

  408.6

  746.3

  873.5

  881.8

  817.3

  808.3

  912.8

   35.9

   20.8

   38.5

   20.9

   20.8

   18.5

   27.0

   26.7

   72.2

   29.0

   29.2

   17.7

   23.8

   35.1

   52.2

   35.7

   36.2

   33.2

   45.7

   26.6

   46.6

   27.5

   26.4

   16.7

   62.0

   48.5

  101.1

   46.6

   46.1

   23.1

   47.3

   41.2

   84.3

   38.9

   38.8

   22.0

    7.9

    6.9

    8.2

    7.0

    7.0

    5.9

    8.5

    8.2

   14.6

    8.5

    8.5

    5.7

   11.3

   13.0

   16.5

   13.0

   13.0

   10.1

   39.4

   22.9

   70.7

   23.2

   27.6

    5.0

   29.9

   24.8

   60.8

   25.7

   33.8

   16.2

   34.3

   36.5

   34.8

   37.0

   40.2

   37.4

   46.5

   28.8

   73.4

   28.6

   34.8

    5.2

   61.2

   40.8

   88.9

   40.7

   54.7

   22.6

   37.8

   35.8

   55.7

   35.6

   41.2

   35.4

    6.8

    6.2

   10.4

    6.3

    7.6

    2.8

    7.2

    7.9

    9.8

    7.7

   10.7

    6.4

   15.0

   16.6

   10.1

   16.4

   16.0

   15.2

National Influenza: ARMA National Influenza: Inferno Puerto Rico Dengue Fever: ARMA Puerto Rico Dengue Fever: Inferno

A
fter P

eak
B

efore P
eak

In V
alley

Nowcast 1 Week 4 Week Nowcast 1 Week 4 Week Nowcast 1 Week 4 Week Nowcast 1 Week 4 Week

Imputation: Local

Offset: Local

Rescaling: Local

Exclusion: 1 Week

Observed Data (Naive)

Validation Data (Truth)

Imputation: Local

Offset: Local

Rescaling: Local

Exclusion: 1 Week

Observed Data (Naive)

Validation Data (Truth)

Imputation: Local

Offset: Local

Rescaling: Local

Exclusion: 1 Week

Observed Data (Naive)

Validation Data (Truth)

M
et

ho
d

0.00

0.25

0.50

0.75

1.00
Relative Bias

(b) Median weighted interval score (WIS) for forecasts
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1 Results based on aggregating nowcast and forecast performance for 3 weeks just before and 3 weeks just after
each season’s peak. Results also provided after aggregating 4 weeks before and after season minimum/valley. For
ILI, the season valley corresponds to the minimum case counts within the first 35 weeks of the flu season.
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6.3 Comparison of state ILI reporting factor estimators

In Figure N, we plot the estimated inverse reporting factor πts(0) obtained for the lag-based
and local estimation methods. We also plot the observed Nts(0)/Nts(∞) for each week. We
note that the inverse reporting factor estimation methods aim to estimate the expected πts(d) =
E(Nts(d)/Nts(∞)) rather than the observed ratio based on data realizations Nts(d) and Nts(∞).
However, comparison of the estimated πts(d) with the data realizations Nts(0)/Nts(∞) can
provide insight into the accuracy of our estimates.

From this figure, it is clear that the lag-based method using past season reporting data
substantially over-estimates πts(0), while the local method resulted in much better estimations.
This is due to a large discrepancy in the reporting practices in Vermont between the 2017-2018
and 2018-2019 seasons, described on average in Figure C. While less dramatic, we can see small
improvements in estimated πts(d) for other states as well. Figure N also demonstrates that the
local estimation tends to produce noisier (i.e., more “wiggly”) estimates of πts(0) over t than
the lag-based method. This is because the lag method uses data for two seasons of reporting,
while the local method uses data from only the prior 15 weeks.

Figure N: Estimated πts(0) obtained from different lag estimation methods for state-level ILI
in the 2018-2019 flu season1
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1 Data were downloaded on June 13th, 2021. The local lag method used data from the previous 15 weeks to
estimate the inverse reporting factors. The standard lag method used data from the previous 2 seasons to estimate
the inverse reporting factors. Observed inverse reporting factors for each week are also plotted.
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6.4 Comparative performance of observed and validation data analysis

indent Figure P takes a closer look at nowcast and forecast performance for ARMA and
Inferno models applied to the observed real-time data. For nowcasting, the ARMA model tends
to out-perform Inferno, but ARMA modeling performs very poorly for 1 week forecasting. This
may be because the ARMA(2,2) model relies on the data from the last two weeks, which in
this example are subject to reporting error. Since it takes at least two weeks for reporting to
converge to validation values for these data, the most recent two weeks’ real-time data will lead
the ARMA modeling to expect a downward trajectory of case counts. This results in severe
under-estimation in terms of forecasts. In contrast, Inferno uses data from the recent weeks
but also borrows information from past seasons, which may help it better adapt to unexpected
sharp decreases in real-time case counts due to reporting errors. This difference in forecast
performance based on observed real-time data explains the method rankings results presented
in the main paper, which show that observed data analysis has better comparative performance
for Inferno modeling than for ARMA modeling, relative to the forecast performance of reporting
correction methods.
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Figure O: Relative accuracy (1/absolute prediction error, scaled across methods) of 1 week
ahead forecasts for dengue fever using real-time or validation data for modeling1
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1 Results based on absolute prediction error for 5 week rolling window centered at plotted week. Results for 50
weeks per season are shown. The black line represents observed validation case counts for each week.
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Figure P: Dengue fever data nowcasts and forecasts from ARMA and Inferno modeling of
observed data, compared to validation and initial case reports
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6.5 Impact of number of weeks included in local reporting estimation

In this section, we provide some additional figures exploring the impact of K on the performance
of the local πts(d) estimation method. Figure Q shows the πts(0) estimates across K for
national US ILI and Puerto Rico dengue fever. Corresponding nowcast and forecast errors are
provided in Figure R. Figure S provides similar diagnostics for Vermont ILI, where reporting
factor estimates and forecasts are obtained for the 2018-2019 flu season.

Figure Q: Impact of K on estimated πts(0) using local estimation in dengue fever and national
US ILI data (ARMA model)1

(a) Puerto Rico dengue fever
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1 Local estimates for πts(d) are obtained using Eq. 8 .
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Figure R: Impact of local estimation K on nowcast/forecast errors in dengue fever and national
US ILI data using rescaling method (ARMA model)1

(a) Puerto Rico dengue fever

W
ee

ks
 u

se
d 

fo
r 

m
ai

n 
an

al
ys

is

15

20

25

0 25 50 75 100
Number of weeks used for local estimation

A
ve

ra
ge

 a
bs

ol
ut

e 
bi

as

Outcome Nowcast 1 Week Forecast 4 Week Forecast

(b) National US Influenza-like Illness

W
ee

ks
 u

se
d 

fo
r 

m
ai

n 
an

al
ys

is

2000

3000

4000

5000

6000

7000

0 25 50 75 100
Number of weeks used for local estimation

A
ve

ra
ge

 a
bs

ol
ut

e 
bi

as

Outcome Nowcast 1 Week Forecast 4 Week Forecast

1 Results based on aggregation across 50 weeks (dengue fever) or 35 weeks (influenza) across all seasons. Local
estimates for πts(d) are obtained using Eq. 8 .
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Figure S: Impact of K for local πts(d) estimation for forecasting Vermont ILI in the 2018-2019
season (ARMA model)1
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1 Results based on aggregation across 35 weeks in the 2018-2019 season. Local estimates for πts(d) are obtained
using Eq. 8 .
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7 A note on lag scaling

Figure T presents simulation Scenario 5 average absolute nowcast and forecast prediction
errors for (1) validation data analysis, (2) analysis of observed data, and (3) rescaling with
correctly-specified reporting factors across different levels of reporting delay (a). Results are
based on aggregates across 50 weeks of simulated 2009 data and 10 simulation datasets for each
value of a (x-axis).

When validation data itself was used for estimation, the Inferno modeling tended to provide
lower absolute nowcast error than ARMA modeling. ARMA and Inferno model provided more
similar forecast errors based on validation data, with slightly better performance seen across a
for Inferno. Inferno also out-performed ARMA across a in terms of forecasts, but this associa-
tion flipped for nowcasts when uncorrected real-time data were used and when the amount of
reporting delay was large (e.g. less than 80% of cases reported at lag 0). When we applied the
lag-based rescaling method (using the correct reporting factors) to the observed data, ARMA
results mimicked use of validation data in terms of nowcast performance. For Inferno, however,
the rescaling method produced some residual bias in nowcasts, and this bias increased as the
proportion of cases reported at lag 0 decreased. The rescaling method produced bias in fore-
casts for both Inferno and ARMA models when the amount of under-reporting was very large
(a < 0.3).

To illustrate the source of this bias in the original dengue fever data, we compared nowcasts
based on modeling the observed data wihout correction and after applying the rescaling and
mean model offset methods (Supp. Figure U). For Inferno modeling, the rescaling method
clearly showed instability, where nowcasts for individual weeks were occasionally very far from
the validation values, far beyond what we saw using the uncorrected observed data. The mean
model offset and imputation methods (not shown) produce much more stable nowcasts. When
we probed this problem further, we discovered that this instability was being driven by small
fluctuations in the observed data. In the setting with a low number of validation cases and a
large rate of under-reporting, a single additional case in the observed data can translate into a
very large impact on the rescaled data, which is input into the forecasting model. We would not
expect this same instability if either the disease rate were higher or if the rate of under-reporting
were smaller. It is the combination of these factors that produces the instability in the rescaling
method shown here.
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Figure T: Simulations: average absolute prediction error for nowcasts and 1 week forecasts by
proportion of initially-reported cases in simulated 2009 dengue fever data 1
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1 Results aggregated across 50 weeks and 10 simulation replicates for each proportion.
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Figure U: Data Analysis: nowcast prediction error in actual dengue fever data for 2009
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1 All values represent differences between nowcast and true validation values. The gray line corresponds to
equality with validation data.
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8 Simulations of dengue fever data

Figure Va provides a visualization of the 200 simulated validation dengue fever datasets used
in the simulation study. The mean structure and variability of these simulated datasets were
chosen to mimic the actual data on dengue fever cases in the Puerto Rico between 1990 and
2009, shown in the figure by a thicker black line.

As described in the main paper, reported delay was then generated under various simulation
scenarios. For simplicity, all reporting profiles considered followed the following form: πts(d =
{0, ..., 6}) = {a, 0.5+a/2, 0.75+a/4, 13/16+3a/16, 14/16+a/8, 15/16+a/16, 1}. This structure
was parameterized in terms of constant a, the proportion of eventually-reported cases that were
reported initially at lag week 0. Corresponding πts(d) are plotted for a in (0.05, 1) in Figure
Vb.

Results are presented in the main paper, and we present some additional results here. Figure
W provides the estimated weighted interval scores for the 2009 simulated data. Figure Y
explores the performance of the proxy shrinkage strategy for estimating πts(d) and applying the
rescaling method in terms of resulting forecast performance as a function of (1) the quality of
the proxy in terms of its correlation to Nts(∞) and (2) the amount of under-reporting (i.e., a).
Figure X explores forecast performance for the exclusion method as a function of the amount
of under-reporting.

Figure V: Visualization of simulated dengue fever data

(a) Validation data for 200 simulated datasets and observed dengue fever data (black line)
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Figure W: Median forecast weighted interval scores in dengue fever simulated data (ARMA
models, Scenarios 1-4) 1
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Figure X: Forecast performance of exclusion method by proportion of initially-reported cases
in dengue dever simulated data (ARMA models, Scenario 5)1

(a) Average absolute error for 1 week forecasts, scaled by season peak case counts
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(b) Weighted interval score for 1 week forecasts
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Figure Y: Forecast performance of rescaling method with reporting factors based on proxy
shrinkage by proxy quality and proportion of initially-reported cases in dengue fever simulated
data (ARMA models, Scenario 5)1

(a) Average absolute error for 1 week forecasts, scaled by season peak case counts
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9 Simulations of national US ILI data

In this section, we replicate the simulations presented for dengue fever-like data in the main
paper and in Section 8. This time, however, we simulate data to look like the US national ILI
dataset. These data are simulated exactly as described for the dengue fever setting in the main
paper except reporting delay was simulated to be much less severe. We chose to limit our focus
to the setting with higher initial reporting rates to better align with observed rates of reporting
for these data. Recall, a denotes the proportion of eventually-reported cases that are reported
initially (lag 0).

We considered the following simulation scenarios:

1. Constant : reporting was constant in t and s and corresponded to a = 0.80.

2. Vary by week : reporting varied by t and was constant in s. a initially increased from 0.80
to 1 during weeks 1 to 25 in each season and then decreased from 1 to 0.80 thereafter.

3. Moderate improvement between seasons: reporting improved in the last season, with a =
0.80 for the 2010-2017 flu seasons and a = 1 for the 2018 flu season.

4. Moderate worsening between seasons: reporting worsened in the last season, with a = 1
for the 2010-2017 flu seasons and a = 0.80 for the 2018 flu season.

5. All season combinations: Each strata of 10 simulation replicates was assigned a different
value for a between 0.80 and 1. Within each strata, reporting (i.e., a) was constant in s
and t.

For each set of simulated validation data, we also simulated 4 external proxy variables such
that pts = 2 log(Nts(∞) + 0.1) + ets, where ets ∼ N(0, σ2) and where σ2 took values in (0.01, 1,
4, 16). These error rates corresponded to correlations between transformed pts and Nts(∞) of
0.99, 0.80, 0.50, and 0.13. Results are aggregated across the first 35 weeks of the flu season.

Aggregated nowcast and forecast performance in terms of bias, WIS, and coverage of 95%
confidence intervals are shown in Figures Z and AA. We find that the negative impact of
changes in reporting delay between seasons is much less striking than for the simulated dengue
fever results. This is largely due to the magnitude of the assumed differences in reporting be-
tween seasons, which in the current simulations are assumed to differ from 80% reporting on
the first week to 100% reporting on the first week. Even when true reporting varied within each
season by week, the local estimation method produced the best forecast performance, surpassing
the model-based method where intra-season trends were modeled via a regression model. This
is likely due to misspecification of the dependence on week t in the reporting delay model for the
model-based approach. In general, the local estimation method produced the most robust per-
formance across the different simulation settings. Interestingly, the imputation strategy often
produced comparable or slightly worse performance than the rescaling and offset methods. We
believe this is due to the extra forecast uncertainty resulting from the imputation procedure,
which outweighs bias due to misspecified reporting factors in the setting where reporting is
fairly good. This contrasts results seen in the dengue fever simulations, where the imputation
approach resulted in improved nowcast and forecast coverage.

Figure BB compares the performance of the exclusion method for generating 1 week fore-
casts as a function of the number of excluded weeks K and the proportion of eventually-reported
cases reported at lag 0. For all K and π(0) greater than roughly 0.85, we find that excluding
recently-reported weeks reduces forecast performance compared to ignoring reporting delay en-
tirely. Unlike the dengue fever example, however, we do start to see some benefit of excluding
one or two recent weeks for π(0) less than 0.85. This may be because the higher case counts
in the ILI setting makes the forecasting more reliable several weeks in the future, and the ad-
ditional noise introduced by excluding recent weeks’ data is less than the noise resulting from
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the reporting delay.
Figure CC compares the performance of the proxy shrinkage for generating 1 week fore-

casts as a function of the proxy correlation with validation case counts and the proportion of
eventually-reported cases reported at lag 0. Unless the correlation between the proxy and the
validation case counts is very strong, we find that the proxy-based estimates of πts(d) introduce
more noise into the forecasting than the reporting delay itself does for reporting rates at least
80% in the first week. When initial case reporting gets worse, however, we expect to see greater
advantage to including the proxy data.

Figure Z: Average nowcast and forecast biases and coverage of 95% confidence intervals for
US ILI simulated data (ARMA models, Scenarios 1-4) 1
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Figure AA: Median forecast weighted interval score for US ILI simulated data (ARMA models,
Scenarios 1-4) 1
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1 Results correspond to the 2018 flu season simulated data and are aggregated across 100 simulated datasets and
35 weeks. Relative weighted interval scores (WIS) are calculated relative to the largest value in each column.

39



Figure BB: Forecast performance of exclusion method by proportion of initially-reported cases
in ILI simulated data (ARMA models, Scenario 5)1

(a) Average absolute error for 1 week forecasts, scaled by season peak case counts
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(b) Weighted interval score for 1 week forecasts
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1 Results aggregated across 35 weeks and 10 simulation replicates for each season/proportion.
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Figure CC: Forecast performance of rescaling method with reporting factors based on proxy
shrinkage by proxy quality and proportion of initially-reported cases in ILI simulated data
(ARMA models, Scenario 5)1

(a) Average absolute error for 1 week forecasts, scaled by season peak case counts
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(b) Weighted interval score for 1 week forecasts
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1 Results aggregated across 35 weeks and 10 simulation replicates for each season/proportion.
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10 Extension for modeling percent ILI among outpatient visits

The proportion of disease cases in some defined group of people is a common forecasting target.
For example, the proportion of outpatients with influenza-like symptoms is a key metric used in
monitoring ILI within the US. When the number of people seeking outpatient treatment (i.e.,
the denominator of the proportion) is not a fixed value, the leap between forecasting total cases
and proportions of cases is not straightforward. In this section, we provide some intuition for
how we could approach reporting delay correction when the target estimand for forecasting is
a percent rather than the total number of cases. Many of the conceptual approaches in Figure
2 in the main paper still apply, after modification. For illustration, we will focus on the setting
where the goal is forecasting proportion ILI among outpatients in the US, but these methods
can be applied more generally.

Methods

Let yts(d) be the proportion of outpatients with ILI symptoms for week t in season s at lag d, and
let yts(∞) denote the corresponding validation proportion. yts(d) is similar to our previously-
defined Nts(d), except it has been divided by the total number of outpatients reported for week
t and season s by lag d. We can reframe the problem of addressing reporting delay in terms
of selection bias, where the case rate in the sample of outpatients reported by week d may
or may not be representative of the eventual sample of outpatients included in the validation
calculation. We expect the intermediate sample reported by lag d to differ from the validation
sample in two ways (1) some patients in the intermediate sample may be excluded from the
validation sample and (2) some patients in the validation sample may not be included in the
intermediate sample. While (2) is driven by reporting delay, we observe that (1) can also occur
in the US national ILI data, so we want our methods to be flexible enough to handle both
situations.

Consider the broader (possibly poorly-defined) population that is eligible to become an
outpatient included in our analysis, due to geographic area of residence or otherwise. For each
individual in that population, we define an indicator for whether or not they will be included in
the validation sample as an outpatient, Sts(∞). We also define an indicator for their hypothetical
ILI symptom status, Dts. We define similar quantities Sts(d) indicating whether or not each
individual was included in the intermediate sample used to estimate yts(d). We can then rewrite
yts(∞) = P (Dts = 1|Sts(∞) = 1) and yts(d) = P (Dts = 1|Sts(d) = 1). We can relate these two
quantities as follows:

yts(d) =
P (Sts(d) = 1|Dts = 1)P (Dts = 1)

P (Sts(d) = 1|Dts = 1)P (Dts = 1) + P (Sts(d) = 1|Dts = 0)P (Dts = 0)
(Eq i)

=
rts(d)P (Dts = 1)

rts(d)P (Dts = 1) + P (Dts = 0)

=
pts(d)yts(∞)

pts(d)yts(∞) + {1− yts(∞)}
where we define

rts(d) =
P (Sts(d) = 1|Dts = 1)

P (Sts(d) = 1|Dts = 0)
(Eq j )

rts(∞) =
P (Sts(∞) = 1|Dts = 1)

P (Sts(∞) = 1|Dts = 0)

pts(d) =
rts(d)

rts(∞)
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Inverting Eq i , we have that

yts(∞) =
yts(d)

pts(d) + yts(d) [1− pts(d)]
(Eq k)

In the following text, we describe a two-step estimation process for estimating pts(d) and fore-
casting future values of yts(∞). Similar to methods described in the main paper, we can estimate
pts(d) using historical data on real-time proportion reporting. The following methods directly
parallel the approaches in the main paper with slight modifications to account for the different
proportion structure of the forecasting target.

Forecasting

Suppose first that we have an estimate of pts(d). We will discuss how to estimate this quantity
later on. We can implement methods in parallel to those proposed in Section 3.1 for counts
in this setting where the forecast targets are proportions.

• Rescaling: We can use Eq i to obtain an estimate of yts(∞) in the presence of reporting
delay. Then, we can use yts(∞) for forecasting.

• Modeling with offset: Suppose our forecast model assumes a logit structure such that
logit(yts(∞)) = f(t, s,X; θ) for some mean model structure f(t, s,X; θ) possibly a function
of covariates X in addition to t and s. In this setting, we can show that

logit (yts(d)) = f(t, s,X; θ) + log (pts(d)) (Eq l)

In other words, we can fit our forecasting model using yts(d) instead of yts(∞) if we include
an offset term, log (pts(d)).

• Imputation: Similar to methods discussed for counts in the main paper, we can obtain
multiple imputations of yts(∞) using the relationship in Eq i and similar logic as in
Section 4.

• Exclusion: We can exclude the most recent weeks’ data as can be done for forecasting case
counts

Estimating pts(d)

The above forecasting strategies for accounting for the reporting delay assume that we have an
estimate of pts(d). Here, we describe how we can apply modifications of the methods in Section
3.2 to estimate pts(d). First, we note that

pts(d) =
P (Sts(d) = 1|Dts = 1)

P (Sts(d) = 1|Dts = 0)

P (Sts(∞) = 1|Dts = 0)

P (Sts(∞) = 1|Dts = 1)
(Eq m)

=
P (Dts = 1|Sts(d) = 1)P (Dts = 1)

P (Dts = 0|Sts(d) = 1)P (Dts = 0)

P (Dts = 0|Sts(∞) = 1)P (Dts = 0)

P (Dts = 1|Sts(∞) = 1)P (Dts = 1)

=
yts(d)

1− yts(d)

1− yts(∞)

yts(∞)

We can apply the following approaches to estimate pts(d):

• Estimated as a function of lag only: Using historical data on real-time case reporting and
excluding recent weeks for which yts(∞) is not available, we estimate

p̂ts(d) = meani,j

(
yij(d)

1− yij(d)

1− yij(∞)

yij(∞)

)
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• Model-based estimation: For each historical week with real-time case reporting (excluding
more recent weeks), we can calculate pij(d) using Eq m. Then, we can model pij(d) as a
function of i, j, and possibly additional covariates X. This model can be used to predict
the unknown quantity pts(d) for recent weeks t and s.

• Local estimation: Following logic in the main paper, we can estimate pts(d) using only the
most recent weeks’ reporting data as follows:

p̂ts(d) = meant−d−1
i=t−K

(
yis(d)

1− yis(d)

1− yis(t− i)
yis(t− i)

)
(Eq n)

Unlike the estimator of πts(d) in Eq. 8 , this estimator is not necessarily conservative
(biased toward 1) for estimating p̂ts(d).

• Sensitivity analysis: We can repeat our analysis using multiple plausible values of pts(d).

On the potential for bias

We show in the main paper that there can be a substantial bias in forecasting cases when
we ignore the reporting delay. Although now shown, our explorations of reporting delay for
proportion forecasts show that reporting delay tends to have a much lesser impact on forecast
performance for proportions than it does for cases. For forecasting national US ILI, for exam-
ple, ignoring reporting delay has a comparatively lesser impact on forecasts of yts(∞) values
compared to its impact on case forecasts Nts(∞). Still, in settings where pts(d) is large (>>1)
or small (<<1), selection bias caused by lack of representativeness of the intermediate sam-
ple of outpatients used to calculate yts(d) could still have an appreciable impact on forecasts.
When historical data on real-time reporting of y is available, we recommend that forecasters
evaluate the magnitude of Eq k over time when determining whether or not they need correct
for reporting delay in forecast modeling.
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