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Supporting Information

A Estimates of Parameter Values

We present the assumptions and derivations that we use to estimate the parameters in our model. (See Section 2 of
the main manuscript.) These include parameters that we can obtain directly (possibly with some inference) from the
literature and ones that we fit from case data in Ottawa. In our discussion, we use log to denote the natural logarithm.

A.1 Parameters that we Infer from the Literature

A.1.1 Properties of Exponential Distributions

Because we assume that transition times between disease states come from exponential distributions, we state a few
useful properties of exponential random variables.

For a random variable X that one samples from an exponential distribution with rate λ (i.e., X ∼ Exp(λ)), the
probability density function is f(x) = λe−λx, the mean is 1/λ, and the median is log 2/λ.

Suppose that we have a random variable Y = min{Y1, Y2}, where Y1 and Y2 are random variables that we sample
from exponential distributions of rates λ1 and λ2, respectively. It then follows that Y is an exponential random variable
with rate λ1 + λ2 and the probability that Y1 < Y2 is λ1/(λ1 + λ2).

A.1.2 Parameters

Transition Rate from Exposed to Asymptomatic (ν). The rate of moving from the exposed compartment to a
contagious state (and hence to the asymptomatic compartment in our model) has been estimated to be ν = 1 day−1 [1].

Recovery Rate from Hospitalization (ζ). The mean duration of hospitalization has been estimated to be 1/ζ =
12.8 days [2], so ζ ≈ 0.0781 day−1.
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Transition Rates from Asymptomatic to Ill (α) and Recovered (η). It has been estimated that 19.45% of
cases are entirely asymptomatic [3], so η

η+α = 0.1945. Byrne et al. [4] summarized many relevant studies that give data
about different transition rates. From these studies, the mean duration in the asymptomatic state has been estimated to
be about 1

α+η = 7.25 days [5] and the median duration has been estimated to be about log 2
α+η = 9.5 days [6]. We take the

mean of these two values to estimate 1
η+α ≈ 10.478 days, which we combine with η

η+α = 0.1945 to obtain α ≈ 0.07688

day−1 and η ≈ 0.01856 day−1.

Transition Rates from Ill to Hospitalized (µ) and Recovered (ρ). It has been estimated that approximately
µ

µ+ρ × 100 = 20% of the symptomatic cases of COVID-19 result in hospitalization [7]. In children with mild cases of

COVID-19, the median duration from the onset of symptoms to no longer being infectious is about log 2
µ+ρ = 12 days [8].

(This study was also referenced in Byrne et al. [4].) In Belgium, the median duration from the onset of symptoms to
hospitalization was estimated to be log 2

µ+ρ = 5 days [9]. We take the mean of the values from these two studies and

thereby estimate 1
µ+ρ ≈ 12.2629 days. With µ

µ+ρ = 0.2, we obtain µ ≈ 0.01631 day−1 and ρ ≈ 0.06524 day−1.

Mask Risk-Reduction Factor (m). Based on three different viruses (SARS CoV-2, SARS-CoV, and MERS-CoV),
an unadjusted relative risk of contracting an infection when wearing a face mask versus not wearing one has been
reported to be 0.34 (with a 95% confidence window of 0.26 to 0.45) [10]. These results include both healthcare settings
and non-healthcare settings. Because the three viruses are from the same family, it was argued in [10] that their
relative risks should be comparable. For the data that was reported in this paper, it is not clear if only one or both
individuals wore masks in their interactions. We use m = 0.34 to represent the risk reduction when both individuals
in an interaction wear masks, and we use

√
m ≈ 0.5831 if only one individual in an interaction wears a mask. That is,

if only one individual in an interaction wears a mask, we quantify the transmission risk as the geometric mean of the
best-case transmission reduction if both individuals wear a mask and the worst-case transmission reduction if neither
individual wears a mask. By definition, given values q1, q2, . . . , qn, their geometric mean is (q1 × q2 × · · · × qn)

1/n.
Although our choice seems arbitrary, according to [11], there is a small reduction in the chance of becoming infected in
people who wear masks within a household, and it seems plausible that one individual wearing a mask in an interaction
between two people confers some reduction in transmission.

Probability of Breaking Weak Contacts if Symptomatic (b). It was very difficult to estimate this parameter.
Ultimately, we use the fact that 92% of people in a survey reported practicing physical distancing [12] as a proxy for
the fraction of a population who would break their weak contacts if they became symptomatic. That is, b = 0.92.

Baseline Transmission Probability β and Caregiving (wc) and Weak (ww) Edge Weights. We estimate β and
these edge weights based on reported secondary attack rates in various scenarios. The secondary attack rate describes
the fraction of a contagious individual’s contacts who become infected as a result of interacting with that individual.
The secondary attack rate for weak contacts [13] appears to range from about 1% to about 6%, so we estimate it to be
3.5%. Additionally, the secondary attack rate within a household has been estimated to be approximately 20% [13] and
is much higher (about 37.8%) between spouses [14].

Caregiving work is extremely intimate and requires extended, close physical contact and potential exposure to bodily
fluids. Such a level of intimacy is not typical between housemates, so we use the secondary attack rate between spouses
as a proxy for the level of risk in an interaction between a caregiver and a disabled person.

We conduct a set of simulations to estimate the secondary attack rate for each type of contact. The secondary
attack rate is the fraction of a contagious individual’s contacts that they infect on average. In each trial, we assign a
contagiousness duration Dc (which is equal to the asymptomatic time plus any symptomatic time, depending on contact
type and on whether or not contacts are broken if an individual becomes ill) and compute the probability that that a
contagious individual infects somebody. For weak contacts1, we use a daily transmission probability of

√
mwwβ; for

strong contacts, we use a probability of β; for caregiving contacts, we use a probability of wcβ.

1We obtain the value
√
m by estimating the risk mitigation of masks as the geometric mean of the value (1) when no individual in an

interaction wears a mask and the value (m) when both individuals in an interaction wear a mask. We use the geometric mean because of the
uncertainty in whether or not people wear masks.
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In a single trial, the probability of infection via a strong contact is 1 − (1 − β)Dc . We then determine the values
of ww, β, and wc so that, when averaged over many trials, the mean probability of passing on COVID-19 matches the
above secondary attack rates. This yields β ≈ 0.0112, ww ≈ 0.473, and wc ≈ 2.268.

Subpopulation Proportions of the Total Population. By combining the fraction of the population that has a
cognitive disability with the fraction that has a physical disability that causes difficulty in dressing, bathing, or getting
around inside a home, we estimate that the fraction of our population who are disabled and receive assistance from
professional caregivers is fdis ≈ 0.073 [15]. Unfortunately, there is a paucity of readily available data, so this is a
rough estimate. From the United States Bureau of Labor Statistics, a fraction fcare ≈ 0.021 of the U.S. population
is employed as a home health/professional care aid [16]. We use this number as an estimate of the proportion of the
population that provides care. This is likely an underestimate because many people provide care in unpaid settings.
From an estimated 55,217,845 essential workers in the United States [17], whose population in July 2019 was estimated
to be 328,239,523 [18], the fraction of essential workers is approximately 0.1682. After subtracting the people who are
caregivers, we obtain that a fraction fess ≈ 0.1472 of the population are essential workers. That leaves the fraction
fgen ≈ 0.7588 for the remaining population (i.e., the general population).

Mean Numbers of Contacts. We need distributions of the numbers of family contacts, weak contacts (through
work, shopping, seeing friends, and so on), and caregiving contacts. We begin by focusing on the mean values and later
consider the distributions themselves. From the 2016 Canadian census [19], households have a mean of 2.4 members,
which implies that individuals have a mean of F̄ = 1.4 strong contacts.

From Gallup data in April 2020 [20], during pandemic lockdowns, the people who were surveyed had a mean of 5.1
contacts per day at work and a mean of 4 contacts per day outside of work and home. Additionally, 27% of working adults
completely isolated themselves except to members of their own household. In Europe in 2008, the overall population
had a mean of 13.4 daily contacts without a lockdown in place [21]. In April 2020, essential workers saw a mean of 22
contacts per day (this is a much larger number than people who are not essential workers) during the lockdown [22]. By
combining these disparate pieces of data, we are able to make some relevant estimates.

Let Ogd denote the mean number of occupational contacts of the general and disabled subpopulations on each day
without a lockdown, Oc denote the mean number of disabled people that a caregiver sees in a day, O∗

gd denote the mean
number of occupational contacts of the general and disabled subpopulations on each day during a lockdown, w denote
the mean number of weak contacts (outside of work) of any individual in a population on each day without a lockdown,
w∗ denote the mean number of weak contacts (outside of work) of any individual in a population on each day with a
lockdown, and Oe denote the mean number of occupational contacts of essential workers on each day (both with and
without a lockdown). Our parenthetical comment about Oe indicates that we are assuming that the number of work
contacts is the same for essential workers regardless of whether or not there is a lockdown. We also assume that w does
not depend on an individual’s subpopulation (disabled person, caregiver, essential worker, or member of the general
population). Likewise, we assume that w∗ does not depend on an individual’s subpopulation.

From the data that we cited two paragraphs ago, we estimate that w∗ = 4 and that each disabled person sees 2
caregivers per day. Additionally, Oc =

2fdis

fcare
≈ 6.95 and

22 ≈ fess(Oe + w∗ + F̄ ) + fcare(Oc + w∗ + F̄ )

fess + fcare

5.1 ≈ (fcare + fdis)O
∗
gd + fessOe + fcareOc

13.4 ≈ fgen(Ogd + w + F̄ ) + fdis(Ogd + w + F̄ ) + fess(Oe + w + F̄ ) + fcare(Oc + w + F̄ ) .

To close the system of equations and obtain our estimates, we require one further assumption. If 27% of workers
isolate at home, then the mean number of contacts at work is

O∗
gd ≈ [0.27× 0] + [0.73× (0.73Ogd)] ≈ 0.5329Ogd .

We obtain w ≈ 5.14, w∗ ≈ 4, Oe ≈ 16.23, Oc ≈ 6.95, Ogd ≈ 5.20, and O∗
gd ≈ 3.08. When we use approximate truncated

power-law distributions to model the possibility that some people have many contacts and others have few contacts, we
want to satisfy the following criteria:

• the general population has a mean of w +Ogd ≈ 10.34 weak contacts per day when not physically distancing and
a mean of w∗ +O∗

gd ≈ 7.08 weak contacts per day when physically distancing;
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• the disabled subpopulation has the same mean value of weak contacts as the general population whether or not
people are physically distancing;

• the caregiver subpopulation has a mean of w ≈ 5.14 weak contacts per day when not physically distancing and a
mean of w ≈ 4 weak contacts per day when physically distancing; and

• the essential-worker subpopulation has a mean of Oe + w ≈ 21.37 weak contacts per day when not physically
distancing and a mean of Oe + w∗ ≈ 20.23 contacts per day when physically distancing.

Although the caregiver subpopulation may seem to have very few weak contacts, we note that most of their daily
contacts come from Oc, which we estimate separately from the ordinary weak contacts.

Although the number of weak contacts for essential workers does decrease slightly during a lockdown, we use Oe+w
whether or not a lockdown is in place as an approximation because the difference in the numbers of weak contacts is
very small (21.37 versus 20.23). In practice, it was difficult for us to reduce the mean number of contacts by such a small
amount in this situation. Picking the minimum of two random variables from similar distributions tends to result in a
value that is much smaller than the original one and thereby results in the essential workers having far too few contacts.

Distribution of Strong Contacts: We use data from the 2016 Canadian census [19] to describe the distribution of
household sizes. According to these data, 105,750 households consist of 1 person, 124,280 households consist of 2 people,
58,010 households consist of 3 people, 55,215 households consist of 4 people, and 30,500 households consist of 5 or more
people (which we treat as exactly 5 people). From these data, we construct an empirical distribution that we use for
the entire population. It is Ds = E(0.283, 0.332, 0.155, 0.148, 0.0816).

Caregivers: To each disabled person, we assign one strong caregiver and one weak caregiver with whom they interact
each day (although they do not interact with the latter when either they or the caregiver is symptomatic). We choose
the weak caregivers from a pool of caregivers. We use 10 as the baseline caregiver-pool size, but we also consider other
sizes (4 and 25, as we discussed in Section 3 of the main manuscript).

A.2 Fits from Data

We need to estimate three other parameters in our model. Even with our many estimates from the literature that
we discussed in Section A.1, we still need to estimate the following quantities: (1) the maximum number C∗ of weak
contacts of an individual, (2) the number A0 of people who are asymptomatic on day 0, and (3) the probability τ that
an individual who is symptomatically ill but not hospitalized is counted in the cumulative number of cases.

We model the number of weak contacts using an approximate truncated power-law distribution. That is, the daily
number of weak contacts of an individual is distributed according to P(0, C∗;Oq), where Oq denotes the mean number
of weak contacts of subpopulation q.

Along with the simulation procedure that we will describe in Section B, we use a fitting procedure (along with case
data from Ottawa [23]) to estimate τ and C∗ with a grid search. We use the first 90 days as fitting data and assume
that the associated contact distributions and mask-wearing policies are instantly adopted on day 44 (i.e., the start of
the lockdown in Ottawa). We tried fitting over shorter time windows, but these yielded poorer fits. The likely reason
for the poor fits for these shorter time windows is that the parameter C∗ is smaller when fit over shorter time intervals
(because the disease has spread less at that stage). The longer time window allows us to fit C∗, which may be a key
driver in the disease dynamics, to a larger value and thereby allows extensive spreading of the disease.

We assume that there are A0 people on day 0 in the asymptomatic compartment and that all other individuals are in
the susceptible compartment. On day 1, with the first recorded case, there is 1 recorded case in expectation. Therefore,

1 =
α

α+ η︸ ︷︷ ︸
Pr(transition from asymptomatic to ill)

× e−(α+η)×1 day︸ ︷︷ ︸
Pr(leave the A compartment within 1 day)

× τ︸︷︷︸
test ill individual

× A0 . (1)

The first factor is the probability that the transition from the A compartment to the I compartment occurs before the
transition from A to the R compartment. The second factor is the probability that there is a transition out of the A
compartment in a 1-day time period. The third factor is the probability that an individual in the I compartment tests
positive for COVID-19. The fourth factor (A0) is the total number of asymptomatic people on day 0. Our choice to
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make the expected number of documented cases equal to 1 on day 1 allows us to have two parameters (rather than
three) when fitting. Using more parameters can result in overfitting.

We seek to minimize the ℓ2-error in new daily cases (i.e., the change in the daily cumulative case count). Because our
stochastic model is complicated, with variation across trials, we use a grid search (instead of a gradient-based method)
to estimate parameters. In Table A, we summarize our results. From this procedure, our “optimal” parameter values
are τ = 0.04 and C∗ = 60.

B Simulations of our Stochastic Model of COVID-19 Spread

B.1 Simulation Procedure

We summarize our simulation procedure in Algorithm 1, which uses the other algorithms that we present in this
subsection. The code is available at our Bitbucket repository.

We initially construct a network by matching ends of edges (i.e., “stubs”) in a generalization of a configuration-model
network. We assign a number of stubs to each individual in each subpopulation to encode their number of weak contacts
(see Algorithm 2). We determine this number from an associated probability distribution. We then do a so-called
“random matching” (see Algorithm 4), in which we match stubs uniformly at random. Any pair of individuals whose
stubs are matched in this way are contacts of each other. If we choose two individuals who are already contacts or
an individual is paired with themself, we discard that pairing. For strong contacts, we assign individuals to units (see
Algorithm 3) and make members of these units strong contacts with each other unless they are already contacts (see
Algorithm 5). Consequently, the number of contacts per individual does not perfectly match the desired distributions.
However, for a network with many nodes, these errors are negligible in practice. See [24] for a detailed exposition
of different types of configuration models (although we employ a generalization of a configuration model), including
different strategies for how to deal with self-edges and multi-edges. We assign weak and strong caregivers to disabled
people in a manner (see Algorithm 6) that is analogous to how we assign strong contacts.

After constructing a contact network, we place some number of individuals, who we choose uniformly at random
from the nodes in the network, into the A and/or I compartments. This number of individuals, the subpopulations
of these individuals, and the choice of these compartments (all of these individuals in A, all of these individuals in I,
or some of these individuals in A and some of them in I) depend on user input. For example, in the four simulations
that we used to generate Fig 10 in the main manuscript, all initially infected individuals are in the A compartment and
are in a single subpopulation (caregivers, disabled people, essential workers, or the general population). In all other
simulations that we discuss in the present paper, the initially infected individuals are all in the A compartment.

After initializing the contact structures and the compartments of the nodes, we execute the commands in the following
paragraphs for a user-specified number of iterations.

We check if we need to update contact structures and/or mask-wearing strategies because of a lockdown (see Algo-
rithm 9) or a reopening (see Algorithm 10). For a lockdown, we update the mask-wearing strategies and assign each
individual a number of weak contacts from the new weak-contact distribution that is associated with their subpopulation.
If the new number of weak contacts is smaller than the current number of weak contacts, we remove excess contacts
uniformly at random. For a reopening, we again update the mask-wearing strategies and assign each individual a number
of weak contacts from their subpopulation’s new weak-contact distribution. If the new number of weak contacts is larger
than the current number of weak contacts, we assign the individual a number of stubs that is equal to the difference
between the new number of contacts and the existing number of contacts and apply Algorithm 4 to connect the stubs.

On each day, we assign a weak caregiver to each disabled person uniformly at random from their pool of weak
caregivers, as long as neither is breaking their contacts. We then use Algorithm 8 to determine if each individual in
the network remains in their current compartment or moves to a new one. If an individual is in the S compartment,
we calculate the probability of infection using Algorithm 7. In this algorithm, we loop through each of this individual’s
contagious contacts (i.e., those in the A, I, or H compartments) and use Eq. (1) of the main manuscript to calculate the
probability that the individual becomes infected. For the E and H compartments, for which there is only one possible
transition to a new compartment, we draw a transition time from an exponential distribution Exp(χ) (where χ is the
associated rate constant) to determine if there is a transition between compartments. If the time is less than 1 day, then
the individual changes compartments; otherwise, the individual stays in their current compartment. For the A and I
compartments, from which an individual can move into one of two possible new compartments, we draw transition times
from Exp(χ1) and Exp(χ2), where χ1 and χ2 are the associated rate constants. If both times are less than 1 day, the
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τ C∗ Error
0.02 50 2.31× 104

0.03 50 1.82× 104

0.03 60 2.38× 104

0.04 50 2.13× 104

0.04 60 1.74× 104

0.04 70 3.05× 104

0.05 50 2.48× 104

0.05 60 1.83× 104

0.05 70 2.26× 104

0.06 50 2.80× 104

0.06 60 2.01× 104

0.06 70 1.76× 104

0.06 80 3.48× 104

0.07 50 3.16× 104

0.07 60 2.26× 104

0.07 70 1.80× 104

0.07 80 2.78× 104

0.08 50 3.32× 104

0.08 60 2.38× 104

0.08 70 1.86× 104

0.08 80 2.51× 104

0.09 50 3.55× 104

0.09 60 2.69× 104

0.09 70 1.93× 104

0.09 80 2.25× 104

0.10 50 3.61× 104

0.10 60 2.82× 104

0.10 70 2.07× 104

0.10 80 1.96× 104

0.10 90 4.40× 104

0.11 50 3.80× 104

0.11 60 2.88× 104

0.11 70 2.16× 104

0.11 80 1.99× 104

0.11 90 3.54× 104

Table A. The ℓ2-error in new daily documented cases for various values of τ and C∗. To determine A0, we use Eq. (1)
of this supplement with a specified value of τ and values of α and µ from the literature. For each set of parameters, we
conduct 96 trials and we compute the error by taking the mean of all trials in which there are at least 250 documented
cases through day 90. We only report parameter values for which the errors are smaller than 5× 104. We test all
parameter values on the lattice with coordinates
(τ, C∗) ∈ {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09.0.10, 0.11} × {50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150}. We
show our best results in bold. That is, our “optimal” parameter values (see the fifth row) are τ = 0.04 and C∗ = 60.
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individual moves to the compartment that has the smaller time. If only one of the times is less than 1 day, the individual
moves to that compartment. If neither time is less than 1 day, the individual remains in their current compartment.
When an individual enters the I compartment, they may break their weak contacts. With probability b, they break
all of their weak contacts; otherwise, they keep all of their weak contacts. Individuals in the I compartment become
documented cases with probability τ . In our pseudocode, we refer to the breaking of contacts as “deactivating” edges
and refer to the re-establishment of contacts as “reactivating” edges. If an individual moves to the H compartment, we
deactivate all of their edges with weak and strong contacts. If an individual moves to the R compartment, we reactivate
any edges that may have been deactivated because of their movement through the I and H compartments (except edges
that are not active because (1) the other individual in the interaction is in the I compartment and broke their weak
contact or (2) the other individual is in the H compartment).

B.2 Implementation of Approximate Truncated Power-Law Distributions

B.2.1 Sampling from the Distribution

Given a lower bound a−, an upper bound a+, and an exponent p, we wish to approximate a power-law distribution for
a discrete random variable N over the interval [a−, a+], where Pr(N = n) = O(n−p) as a+, n → ∞. Our procedure
amounts to (1) shifting the range to avoid the case a− = 0, (2) sampling from a continuous power-law probability
density, (3) truncating the result to an integer, and (4) shifting the range back if we shifted the original range away
from a− = 0. In our model, we use a− = 0 and a+ = C∗, but we present the approach for a general finite sequence of
nonnegative integers.

If a− = 0, we first shift to a distribution on [A,B], where A = max{a−, 1} and B = a+ + (A − a−). We define the
normalization constant

C =

∫ B+1

A

x−p dx

=

{
1

1−p ((B + 1)1−p −A1−p) , p ̸= 1

log(B+1
A ) , p = 1 .

(2)

(Note that one should not conflate C with C∗.) To choose N , we select u ∈ [0, 1) from a uniform distribution and select
x∗ such that

C−1

∫ x∗

A

x−p dx = u . (3)

We then calculate
n∗ = ⌊x∗⌋ , (4)

where ⌊z⌋ is the floor of z (i.e., the largest integer that is less than or equal to z). That is,

x∗ =

{
((1− p)uC +A1−p)1/(1−p) , p ̸= 1

A exp(uC) , p = 1 .
(5)

Finally, we shift back to set
N = n∗ − (A− a−) . (6)

Note that

Pr(N = n) ∝
∫ n+1+(A−a−)

n+(A−a−)

x−p dx =

{
log(n+1+(A−a−)

n+(A−a−) ) , p = 1∣∣(n+ 1 + (A− a−))
1−p − (n+ (A− a−))

1−p
∣∣ , p ̸= 1

=

log(1 + 1
n+(A−a−) ) , p = 1∣∣∣∣(n+ (A− a−))

1−p
(
1 + 1

N+(A−a−)

)1−p

− 1

∣∣∣∣ , p ̸= 1

= O(1/np) as n→∞ ,

thereby ensuring that asymptotically we have a power law as n→∞.
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Algorithm 1 A Simulation of the Spread of COVID-19 on a Contact Network

Input: A set of values for each parameter that we list in Table 1 of the main manuscript
Output: Daily counts of the individuals in each compartment; number of documented cases

1: Initialize Population of size POttawa with fractions fdis who are disabled, fcare who are caregivers, fess who are
essential workers, and fgen who are members of the general population. At initialization, we determine whether or
not each individual will break all of their weak contacts if they become ill (they break weak contacts with probability
b) and determine whether or not they will have a positive test result if they become ill (a positive test occurs with
probability τ).

2: Assign a unique integer ID to each individual in Population.
3: Obtain WeakStubs from Algorithm 2 with input Population.
4: Obtain PossibleHouseholdUnits from Algorithm 3 with input Population.
5: Assign weak contacts using Algorithm 4 with inputs Population, WeakStubs.
6: Assign strong contacts using Algorithm 5 with inputs Population, PossibleHouseholdUnits.
7: Match disabled people and caregivers using Algorithm 6 with input DisabledPopulation, where DisabledPopulation

refers to all individuals in Population who are in the disabled subpopulation.
8: Initialize some number of people to be asymptomatic or ill based on program inputs. (In all of our simulations in

the present paper, we initialize these individuals to be asymptomatic, but one can instead use our code to initialize
individuals as ill; one can also initialize some individuals to be asymptomatic and some individuals to be ill.)

9: day = 0, has opened = false, has closed = false
10: while day < end day do
11: Compute the number of individuals from each subpopulation in each compartment; also compute the number of

documented cases in each subpopulation.
12: for each disabled individual in DisabledPopulation do
13: Select a weak caregiver uniformly at random from their set of weak caregivers.
14: end for
15: for each individual in Population do
16: Calculate the infection probability using Algorithm 7 with input individual.
17: end for
18: for each individual in Population do
19: Advance state by 1 day using Algorithm 8 with input individual.
20: end for
21: day ← day+ 1
22: if time < close time then
23: Do nothing.
24: else if time < open time then
25: if not has closed then
26: Close down (i.e., start a lockdown) using Algorithm 9.
27: has closed ← true
28: end if
29: else
30: if not has opened then
31: Reopen (i.e., end a lockdown) using Algorithm 10.
32: has opened ← true
33: end if
34: end if
35: end while
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Algorithm 2 Weak Stubs

Input: A container of nodes (which we denote by Population)
Output: A container of IDs (which we denote by WeakStubs) in which the ID of each node in Population occurs
with a multiplicity that is equal to the number of stubs of that node.

1: for each individual in Population do
2: Let target equal the number of weak stubs that individual can potentially have; we draw this number from

Dgroup,period, where “group” is their subpopulation and “period” is the current state of the pandemic (pre-
lockdown, lockdown, or post-lockdown).

3: Let current equal the number of current weak stubs of individual.
4: if current < target then
5: needed = current− target
6: else
7: needed = 0
8: end if
9: For needed number of times, append the ID of individual to a container WeakStubs.

10: return WeakStubs
11: end for

Algorithm 3 Household Units

Input: A container of nodes (which we denote by Population)
Output: A container of containers of IDs (which we denote by PossibleHouseholdUnits)

1: Let AllIDs be a container that stores the unique ID for each individual in Population.
2: while AllIDs not empty do
3: Choose an ID, which we denote by ID1, uniformly at random from AllIDs and determine the number of household

contacts (house) of the individual with that ID by sampling from Dstrong.
4: Select house number of IDs uniformly at random from AllIDs.
5: Append ID1 and the above IDs to a container, which we denote by unit.
6: Remove all of the IDs in unit from AllIDs.
7: end while
8: return PossibleHouseholdUnits (which is a container that holds each unit)

Algorithm 4 Assigning Weak Contacts

Input: A container of nodes (which we denote by Population) and a container of IDs (which we denote by
WeakStubs)
Result: All nodes in Population are assigned weak contacts

1: while |WeakStubs| ≥ 2 do
2: Choose IDs ID1 and ID2 uniformly at random from WeakStubs.
3: if ID1 ̸= ID2 and the individuals with IDs ID1 and ID2 are not already contacts (weak, strong, or caregiving)

then
4: Make the individuals with IDs ID1 and ID2 into weak contacts of each other.
5: end if
6: Remove ID1 and ID2 from WeakStubs.
7: end while
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Algorithm 5 Assigning Strong Contacts

Input: A container of nodes (which we denote by Population) and a container of containers of IDs (which we denote
by PossibleHouseholdUnits)
Result: All nodes in Population are assigned strong contacts

1: for each unit in PossibleHouseholdUnits do
2: for each ID in unit do
3: Make the individual with ID a strong contact of each other member of unit, unless the individuals are already

contacts (weak, strong, or caregiving).
4: end for
5: end for

Algorithm 6 Matching Disabled People and Caregivers

Input: A container of nodes (which we denote by DisabledPopultion) that are in the same subpopulation
Result: All nodes in DisabledPopulation are assigned one strong caregiver and a pool of weak caregivers

1: for each disabled individual in DisabledPopulation do
2: Determine care weak num from Dpool, which is the number of weak caregivers in their pool.
3: Select care weak num number of caregivers uniformly at random from the set of caregivers and store them in

CaregiversChosen.
4: for each caregiver in CaregiversChosen do
5: if disabled individual and caregiver are not already contacts (weak, strong, or caregiving) then
6: Make their relationship a weak caregiver–disabled relationship.
7: end if
8: end for
9: end for

10: for each disabled individual in DisabledPopulation do
11: Choose 1 caregiver uniformly at random from the set of caregivers.
12: if disabled individual and the caregiver are not already contacts (weak, strong, or caregiving) then
13: Make their relationship a strong caregiver–disabled relationship.
14: end if
15: end for
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Algorithm 7 Infection Probability

Input: A node (which we denote by individual)
Output: An infection probability (which we denote by infect prob)

1: not get = 1
2: if individual is Susceptible then
3: for each weak contact in individual ’s weak contacts do
4: if the edge to weak contact is active and weak contact is contagious then
5: if both wear a mask then
6: not get ← not get × (1− βmww)
7: else
8: not get ← not get × (1− βww)
9: end if

10: end if
11: end for
12: for each strong contact in individual ’s strong contacts do
13: if the edge to strong contact is active and strong contact is contagious then
14: not get ← not get × (1− βws)
15: end if
16: end for
17: if individual is disabled then
18: for each caregiver in their set of weak caregivers for the day do
19: if the edge to caregiver is active and caregiver is contagious then
20: if both wear a mask then
21: not get ← not get × (1− βmwc)
22: else if one wears a mask then
23: not get ← not get × (1− β

√
mwc)

24: else
25: not get ← not get × (1− βwc)
26: end if
27: end if
28: end for
29: if the edge to individual ’s strong caregiver is active and the strong caregiver is contagious then
30: if both wear a mask then
31: not get ← not get × (1− βmwc)
32: else if one wears mask then
33: not get ← not get × (1− β

√
mwc)

34: else
35: not get ← not get × (1− βwc)
36: end if
37: end if
38: else if individual is a caregiver then
39: for each disabled individual in their set of disabled contacts for the day do
40: if the edge to disabled individual is active and disabled individual is contagious then
41: if both wear a mask then
42: not get ← not get × (1− βmwc)
43: else if one wears mask then
44: not get ← not get × (1− β

√
mwc)

45: else
46: not get ← not get × (1− βwc)
47: end if
48: end if
49: end for
50: end if
51: end if
52: infect prob = 1− not get
53: return infect prob

May 23, 2022 11/18



Algorithm 8 Advancing One Day

Input: A node (which we denote by individual)
Result: individual remains in their current compartment or moves into a new one

1: if individual is in the S compartment then
2: In the time interval ∆T = 1 day, move individual into the E compartment with probability infect prob.
3: else if individual is in the E compartment then
4: Sample Tasymptomatic from the distribution Exp(ν).
5: if Tasymptomatic < 1 day then
6: Move individual to the A compartment.
7: end if
8: else if individual is in the A compartment then
9: Sample Till from Exp(α).

10: Sample Tremoved from Exp(η).
11: if Till < Tremoved then
12: if Till < 1 day then
13: Move individual to the I compartment.
14: Deactivate all of individual ’s edges to weak contacts if individual is someone who breaks their weak contacts.
15: end if
16: else
17: if Tremoved < 1 day then
18: Move individual to the R compartment.
19: Reactivate all of individual ’s edges to their weak contacts (provided, for each weak contact, either that the

weak contact has no symptoms or that they are in the I compartment but do not break weak contacts when
ill).

20: end if
21: end if
22: else if individual is in the I compartment then
23: Sample Thospital from Exp(µ).
24: Sample Tremoved from Exp(ρ).
25: if Thospital < Tremoved then
26: if Thospital < 1 day then
27: Move individual to the H compartment.
28: Deactivate all of individual ’s edges to their weak and strong contacts.
29: end if
30: else
31: if Tremoved < 1 day then
32: Move individual to the R compartment.
33: Reactivate all of individual ’s edges to their weak contacts (provided, for each weak contact, either that the

weak contact has no symptoms or that they are in the I compartment but do not break weak contacts when
ill).

34: end if
35: end if
36: else if individual is in the H compartment then
37: Sample Tremoved from Exp(ζ).
38: if Tremoved < 1 day then
39: Move individual to the R compartment.
40: Reactivate all of individual ’s edges to their weak contacts (provided, for each weak contact, either that the weak

contact has no symptoms or that they are in the I compartment but do not break weak contacts when ill).
41: end if
42: end if
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Algorithm 9 Closing Down (i.e., Starting a Lockdown)

Input: A container of nodes (which we denote by Population)
Result: Lockdown mask-wearing strategies and contact-limiting strategies are implemented for each node in Popu-

lation

1: Update mask-wearing statuses.
2: for each individual in Population do
3: Determine individual ’s new number of weak contacts by sampling new target value from Dgroup,post, where group

is the subpopulation of the individual.
4: end for
5: for each individual in Population do
6: clear = max{0, current weak contacts− new target value}
7: i = 0
8: while i < clear do
9: Select a weak contact ϖ uniformly at random.

10: if neither ϖ nor individual is an essential worker then
11: Remove the edge between the nodes.
12: end if
13: i← i+ 1
14: end while
15: end for

Algorithm 10 Reopening (i.e., Ending a Lockdown)

Input: A container of nodes (which we denote by Population)
Output: Reopening mask-wearing strategies and contact-limiting strategies are implemented for each node in
Population

1: Update mask-wearing statuses.
2: Obtain a container new weak stubs by applying Algorithm 2 with input Population.
3: Apply Algorithm 4 with inputs Population and new weak stubs.
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B.2.2 Estimating the Mean

When B − A is large, it can be computationally expensive to compute the precise mean of the random variable N =
n∗ − (A− a−) from Eq. (6) of this supplement. Additionally, when B −A is large, rounding errors and overflow errors
can lead to inaccurate estimations of the true mean. Therefore, we estimate the mean analytically. Given a−, a+, and
p, we seek to estimate the mean Ep := E(N) over the interval [a−, a+].

We have that

Ep = C−1
B∑

n=A

n

∫ n+1

n

x−p dx

=

{
C−1

∑b
n=A n log((n+ 1)/n) , p = 1

((1− p)C)−1
∑b

n=A n((n+ 1)1−p − n1−p) , p ̸= 1

=

{
C−1

∑b
n=A n log((n+ 1)/n) , p = 1

((1− p)C)−1
(
(B + 1)2−p −A2−p −

∑B+1
n=A+1 n

1−p
)
, p ̸= 1 .

To obtain the third equality, we rewrote
∑B

n=A n(n + 1)1−p as
∑B+1

n=A+1(n − 1)n1−p, whose n2−p terms cancel with∑B
n=A n2−p except at n = A and n = B + 1.
For our approximation, we consider multiple cases.

p = 1: Because {n log(n+1
n )}Bn=A is an increasing sequence of terms, we obtain

S1 := A log

(
A+ 1

A

)
+

∫ B

A

x log

(
x+ 1

x

)
dx ≤

B∑
n=A

n log

(
n+ 1

n

)
≤

∫ B+1

A

x log

(
x+ 1

x

)
dx =: S1 .

Using
∫
x log(x+1

x ) dx = 1
2 (x

2 log((x+ 1)/x) + x− log(x+ 1)) + const, we compute the integrals exactly and obtain the

estimate E1 = C−1(S1 + S1)/2.

p = 2: We need to estimate
∑B+1

n=A+1 n
−1. The sequence 1/n is decreasing, so

S2 :=

∫ B+2

A+1

1

x
dx = log

(
B + 2

A+ 1

)
≤

B+1∑
n=A+1

n−1 ≤ 1

A+ 1
+ log

(
B + 1

A+ 1

)
=

1

A+ 1
+

∫ B+1

A+1

1

x
dx =: S2 .

We obtain the estimate E2 = C−1
(
1
2 (S2 + S2)

)
, where A2−p = (B + 1)2−p = 1 allows us to cancel terms.

p /∈ {1, 2} , p > 1: We need to estimate
∑B+1

n=A+1 n
1−p, where the terms are decreasing. Therefore,

Sp> :=

∫ B+2

A+1

x1−p dx =
(B + 2)2−p − (A+ 1)2−p

2− p
≤

B+1∑
n=A+1

n1−p

≤ (A+ 1)1−p +
(B + 1)2−p − (A+ 1)2−p

2− p
= (A+ 1)1−p +

∫ B+1

A+1

x1−p dx =: Sp> .

We obtain the estimate Ep> = ((1− p)C)−1
(
(B + 1)2−p −A2−p − 1

2 (Sp> + Sp>)
)
.

p /∈ {1, 2} , p < 1: We need to estimate
∑B+1

n=A+1 n
1−p, where the terms are increasing. Therefore,

Sp< := (A+ 1)1−p +

∫ B+1

A+1

x1−p dx = (A+ 1)1−p +
(B + 1)2−p − (A+ 1)2−p

2− p
≤

B+1∑
n=A+1

n1−p

≤ (B + 2)2−p − (A+ 1)2−p

2− p
=

∫ B+2

A+1

x1−p dx =: Sp< .
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S1 Fig. (A) The estimated and exact mean values of the approximate truncated power-law distribution for various
values of the exponent p. The curves are indistinguishable. (B) The error in computing the mean for our
approximations. In both panels of this figure, we use a− = 0 and a+ = 100.

We obtain the estimate Ep< = ((1− p)C)−1
(
(B + 1)2−p −A2−p − 1

2 (Sp< + Sp<)
)
.

Our approximation is very accurate. For a− = 0 and a+ = 100, we plot the approximations and the numerically
exact values in S1 Fig.

C Additional Computational Experiments

C.1 Examining a Distribution with a Deterministic Number of Weak Contacts

The confidence windows for the cumulative documented case counts are large. To determine the cause of these large
variances, we run trials (see S2 Fig) in which each subpopulation has a deterministic number of weak contacts that
is equal to the associated mean value in Section 2.2 of the main manuscript. When the weak-contact distribution is
deterministic, we obtain much smaller variances in the numbers of documented cases than when weak contacts are
distributed according to an approximate truncated power-law. Additionally, using a deterministic distribution results
in many fewer cases of the disease, which hardly spreads.

S2 Fig. Comparison of a mean of 100 simulations when the weak contacts follow (left) an approximate truncated
power-law distribution and (right) a deterministic distribution. In both plots, the mean is in blue and the gray window
indicates the middle 95% of the 100 simulations. On day 44 (i.e., 24 March 2020), all groups limit contacts, all
individuals in caregiver–disabled interactions wear masks, and all individuals wear masks in interactions between
essential workers and their weak contacts.

May 23, 2022 15/18



C.2 Different Values of the Caregiver–Disabled Edge Weight wc

The risk of COVID-19 infections in a caregiver–disabled interaction is larger than in an ordinary household interaction.
In S3 Fig, we compare our results for two different values of the caregiver–disabled edge weight wc. The choice wc = 1
results in essential workers, who have many weak contacts, being the most potent disease spreaders of the four examined
subpopulations (except for spreading from caregivers to other caregivers). However, even the choice wc = 1.5 (which is
smaller than the value wc = 2.27 that we used in most of our computations) results in caregivers being the most potent
spreaders of the disease to the disabled subpopulation.

S3 Fig. The fraction of each subpopulation that is infected through day 148 when all of the initially infected
individuals are in a single subpopulation for (left) wc = 1 and (right) wc = 1.5. On day 44, all groups limit contacts
and disabled people, caregivers, and essential workers wear masks.
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