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1 Local interaction rules for two-dimensional communities

We previously showed that the local interaction rules for cross-feeding communities can be fully
specified with two quantities: the range over which cells can obtain nutrients, i.e. the interaction
range R, and the maximum rate at which cells grow when they are fully surrounded by the
partner type, µ̂ [1]. Using a biophysical model, we showed that these two quantities can be
derived from the biophysical parameters underlying the exchange of metabolites. We previously
derived these results assuming that communities grow in two-dimensional structures and consist
of closely related cell types that share the same pathways for the uptake and release of nutrients.
Here we will generalize our biophysical model by extending it to three-dimensional communities,
and to communities consisting of cell types that can differ substantially in their pathways for the
uptake and release of nutrients. The extended model presented here is thus generally applicable
to any cross-feeding community consisting of two cell types.

Summary of previous results for two-dimensional communities Here, we will briefly summarize
the local rules for two-dimensional cross-feeding communities which we derived previously, for
the full derivation we refer the reader to the supplementary information of reference [1].

1.1 Interaction range

The first essential parameter that describes the local rules of cross-feeding communities is the
interaction range R, which specifies the distance, measured from the cell surface, over which
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amino-acids are primarily exchanged. We previously derived an analytical approximation for
this interaction range based on the molecular parameters of the underlying nutrient exchange
[1]. Specifically, for simple spatial arrangements where the two cell types are separated by a
straight interface, we could calculate how the growth rate decreases away from the interface
between the two cell types. We calculated the distance over which the growth rate decreases
by 50% (i.e. the growth range) and showed that this distance is directly proportional to the
interaction range; the interaction range is a measure of the distance over which amino acids can
be exchanged in an arbitrarily complex spatial arrangement [1]. We found that the interaction
range can be approximated as:

R = β

√
2(1 − ρ)2 · D

ρ(2 + ρ) · (ru + rl) ln
[

rl

γ

(
1 +

√
1 + 4γ

rl

)
+ 4
]

(1)

where β and γ are constants, ρ is the 3D cell density (i.e. the volume fraction occupied by cells),
and D, ru, and rl are the rates of diffusion, uptake, and leakage of the exchanged metabolite.
The square root term can be interpreted as the distance that a molecule travels before it is taken
up by a cell, and this depends primarily on the ratio of diffusion rate and uptake rate and the
cell density. The constant β is the constant of proportionality between the growth range and the
interaction range, and we previously showed that β ≈ 0.88 [1].

The constant γ = 2µwt/IC is species specific, but does not depend on the properties of the
exchanged molecules. Here, µwt is the maximum growth rate of a wild type cell that can produce
all essential metabolites. IC = IC/KM is the internal concentration of the essential metabolite in
a producing cell (IC) relative to the Monod constant of the growth curve (KM ; growth is assumed
to follow Monod kinetics as function of the internal concentration (I) of the essential metabolite:
µ(I) = µwtI

I+KM
). The factor rl

γ = rlIC

2µwtKM
can be interpreted as the flux of metabolites leaked

into the environment, relative to the flux of metabolites used for growth. It is thus a measure of
leakiness: if it is close to 1, a large fraction of the essential metabolite is lost to the environment,
while if it is much smaller than 1 most of the essential metabolite is kept within the cell and
used for growth. To derive Eq. 1 we assumed that rl ≪ µwt and IC ≫ KM . These assumptions
thus state that cells have limited leakiness. We previously showed that these assumptions are
compatible with the measurements from an experimental cross-feeding community [1].

1.2 Maximum growth rate

The second essential parameter that describes the local rules of cross-feeding communities is the
maximum growth rate that cells can obtain when they are fully surrounded by the other cell
type, µ̂. We previously showed that [1]:

µ̂ ≈ µwt · rl

γ

(√
1 + 2γ

rl
− 1
)

(2)
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2 Local interaction rules for three-dimensional communi-
ties

The analytical expressions for the local interaction rules described above were originally derived
for two-dimensional systems, however we will show here that they also hold for three-dimensional
systems. Specifically, the derivation for the maximum growth rate (Eq. 2) only assumed that
isolated non-producing cells, fully surrounded by producing cells do not substantially change the
external concentration of the exchanged compound; this assumption holds equally in 2D and
3D. The analytical expression for the growth range (Eq. 1) also generalizes to 3D. The primary
assumption we made to derive this result is that the interface between the two cell types is
quasi-1D; in 2D systems this assumption means the two types are separated by a straight line,
and in 3D it means the two types are separated by a plane. For these very simple configurations
we can then calculate the growth range using the same quasi-1D approximation. Even though
the growth range R is identical for 2D and 3D systems, the neighborhood size r does depend on
dimensionality. For spherical cells, the number of cells within a distance R of a central cell is
proportional to R2 in 2D and proportional to R3 in 3D. For rod-like cells the relation between
the number of neighbors r and the growth range R is more complicated, as we will show below
(Eq. 21 for 2D and 22 for 3D), however it is still true that the number of neighbors, at a constant
growth range, is higher in 3D than in 2D systems.

For more complex spatial arrangements we cannot calculate the growth range analytically,
however we can use an individual based model that we developed previously to numerically
calculate the interaction range for any arbitrary 2D spatial arrangement [1]. Here we extended
this individual based model to 3D. This is done by replacing the square 2D grid with a cubic
3D grid, and by using a 3D instead of 2D Laplacian to calculate the diffusion of metabolites
(see Eq. 15 and 16 in the SI of reference [1]). We used this model to calculate the interaction
range for 2D and 3D communities with varying spatial arrangements. The grid is initialized by
randomly assigning each grid point to one of the two cell types. To vary the patch size, we pick
a random cell and let it replace one of its randomly chosen neighbors; for each replication cycle
this is done until all cells on the grid have replaced one of their neighbors. The procedure can
be repeated for more cycles to achieve larger patches on average (see Fig A-A). For each grid
we then calculate the steady state growth rates of all cells, and then use these growth rates to
calculate the interaction range using the correlation method we previously developed. In short:
the growth rate of a cell is correlated with the frequency of the partner type within a given
radius. The interaction range is defined as the radius at which this correlation is maximal (see
reference [1] for details).

Using the individual based model we can show that the interaction range we derived is very
similar for 2D and 3D systems. Fig A-B shows the calculated interaction range for 2D and
3D arrangements of a symmetric community for varying patch sizes. The estimated interaction
ranges are very similar between 2D and 3D systems, and both are close to the analytically
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Fig A. The interaction range is similar for 2D and 3D communities and closely matches the
analytical prediction for the growth range. The interaction range was calculated based on
in-silico data for a community consisting of two cell types (A and B) with identical molecular
rates. To calculate the interaction range, we used a previously developed individual based
model [1] to predict the growth rate of all cells growing either in a 2D or 3D community; then
used a correlation method [1] to estimate the interaction range for both cell types. The
interaction range is compared to the growth range, which is calculated analytically from Eq. 1.
For each parameter set, we simulated 100 communities of 40x40 cells (2D) or 40x40x40 cells
(3D), with closed (no-flux) boundaries on all sides as described previously [1]. The grids were
seeded by randomly assigning the two cell types with a frequency of type A between 0.2 and
0.8. To implement larger patches we allowed all cells (in random order) to replace one of their
neighbors (chosen at random). In total we performed 0 to 80 of these replication cycles. The
more replication cycles the larger the average patch size. A) Typical spatial arrangements as
function of the initial frequency of type A (y-axis) and the number of replication cycles
(x-axis), the central slice of the 3D grid is shown. B) The calculated interaction range is shown
as function of the number of replication cycles (i.e., patch size) and compared to the analytical
prediction for the growth range. Parameters: ru

A = ru
B = 3.58 1/s, rl

A = rl
B = 3.58 · 10−6 1/s,

DA = DB = 7.17 · 102 µm2/s, all other parameters as in S1 Table.4



calculated growth range (Eq. 1). This thus shows that our estimate of the range over which cell
can interact holds for both 2D and 3D systems.

3 Local interaction rules for communities consisting of dis-
similar cell types

Previously we assumed that uptake and leakage rates differ between chemical compounds, but
not between cell types [1]. This assumption holds whenever all cell types share the same pathway
for uptake and leakage, as it is the case for microbial communities that consist of closely related
strains or for different cell types in a multicellular organism. However, in general uptake and
leakage rates could differ both between chemical compounds and between cell types, due to
difference in uptake and leakage pathways. Here we will derive the local rules, i.e. the maximum
growth range and interaction range, for such systems. We closely follow reference [1] to derive
these quantities and we refer the reader to that document for more details on the derivation.

We track the internal I and external E concentration of the exchanged compounds. For nota-
tional simplicity, we focus on the exchange of a single compound and we write down the equations
for the internal Ip and external Ep concentration for cells that can produce this compound:

∂Ip

∂t
= 0 (3)

∂Ep

∂t
= −α · ru

p · Ep + α · rl
p · (Ip − Ep) + Deff ∇2Ep (4)

where ru
p and rl

p are the uptake and leakage rates of the exchanged compound of the producing
cells, respectively, and where Deff = (1−ρ)·D

(1+ ρ
2 )

is the effective diffusion constant in a crowded

environment, and where α = Vin

Vout
= ρ

1−ρ is the ratio between the intra- and extracellular volume.
Similarly, we write the equations for the internal In and external En concentration for cells that
cannot produce this compound:

∂In

∂t
= ru

n · En − rl
n · (In − En) − µn · In

Kn + In
· In (5)

∂En

∂t
= −α · ru

n · En + α · rl
n · (In − En) + Deff ∇2En (6)

where ru
n and rl

n are the uptake and leakage rates of the exchanged compound of the non-
producing cells, respectively, Kn is the Monod constant for the non-producing cells (the concen-
tration at which cells can grow at half-maximum rate), and µn is the growth rate that auxotrophic
cells can reach when the exchanged compound is non-limiting.

By solving Eq. 5 for the temporal steady state we can find an expression for the internal
concentration as function of the external concentration inside consumer cells:

5



In(En) =
(ru

n + rl
n)En − rl

nKn +
√

((ru
n + rl

n)En + rl
nKn)2 + 4(ru

n + rl
n)µnKnEn

2(µn + rl
n) (7)

3.1 Maximum growth rate

Here we derive the analytical expression for the growth rate of a non-producing cell surrounded
by a large number of producing partners. We assume that the single non-producing cell has
a negligible influence on the external concentration of the exchanged molecules; thus this con-
centration is identical to that in an area fully occupied by producers cells and can be found by
solving Eq. 3 and 4 at steady state :

Emax =
rl

p

ru
p + rl

p

· IC
p (8)

where IC
p is the internal concentration of the produced compound inside the producer cell. We

can then calculate the growth rate of the consumer cell using:

µmax = µnIn(Emax)
Kn + In(Emax) (9)

where In(Emax) is found by substituting En in Eq. 7 with Emax as given by Eq. 8. Although
an analytical expression can be obtained, it is rather complex and we therefore follow reference
[1] and further simplify the expression by assuming:

Assumption 1 IC
p

Kn
≫ rl

n

rl
p

· ru
p +rl

p

ru
n+rl

n
. This is identical to Assumption 1 in reference [1], with the

additional requirement that the difference in uptake and leakage rates between the two cell types
is not too large.

Assumption 2 rl ≪ µaux. This is identical to Assumption 2 in reference [1].

Using these assumptions we find the following expression for the maximum growth that non-
producing cells can obtain in a cross-feeding consortium:

µmax ≈ µn · θ

(√
1 + 2

θ
− 1
)

(10)

θ =
rl

pIC
p

2µnKn
· ru

n + rl
n

ru
p + rl

p

(11)

The first term in the constant θ measures the leakage flux in producing cells (rl
pIC

p ) relative to the
flux needed by non-producing cells to grow well (2µnKn). The second term corresponds to the
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effective uptake rate (active transport with rate ru
n together with diffusion across the membrane

with rate rl
n) in non-producing cells relative to that in producing cells. In the case where cell

types have identical rates, θ = rlIC

2µK = rl

γ and we thus recover Eq. 2 (Eq. 25 in SI of reference
[1]) which we previously derived for communities where both cell types have the same uptake
and leakage rates. Eq. 10 increases monotonically with θ showing that the maximum growth
rate of non-producing cells increases with the leakage rate of producer cells (rl

p) and the uptake
rate of non-producing cells (ru

n), while it decreased with the uptake rate of producer cells (ru
p ).

3.2 Growth range

Next we will re-derive the growth range for communities in which the cell types differ in their
uptake and leakage rates. The derivation closely follows reference [1]. We consider a scenario
where the two cell types are symmetrically arranged i.e. when the two cell types are separated
by a straight line in 2D or by a flat plane in 3D. This reduces the problem to one-dimension, x,
which measures the distance of a cell to the interface. Producing cells are located at x < 0 and
non-producing cells at x > 0. We will here derive an analytical approximation for the growth
rate of the non-producing cells by setting Eq. 4 and 6 to steady state:

d2E

dx2 =


1

r2
p0

(
E − rl

p

rl
p+ru

p
IC

p

)
if x < 0

1
r2

n0

(
E − rl

p

rl
p+ru

p
In(E)

)
if x > 0

(12)

where

rp0 =

√
Deff

α(ru
p + rl

p) rn0 =

√
Deff

α(ru
n + rl

n)

For x > 0 the analytical solution of Eq. 12 cannot be found due to the non-linear term In(E)
(given by Eq. 7), however we previously showed that this term can be ignored close to the
interface [1]. We thus solve the following approximate ODE:

d2E

dx2 =


1

r2
p0

(
E − rl

p

rl
p+ru

p
IC

p

)
if x < 0

1
r2

n0
E if x > 0

(13)

This equation can be solved analytically to find:

E(x) =

C1 · ex/r0p + rl
p

rl
p+ru

p
IC

p if x < 0

C2 · e−x/r0n if x > 0.
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We can solve for C1 and C2 by imposing continuity of concentration and flux at the interface
and find:

E(x) =


IC

p rl
p

(
r0n−r0pe

x
r0p +r0p

)
(rl

p+ru
p )(r0n+r0p)

if x < 0
IC

p rl
pr0ne

− x
r0n

(rl
p+ru

p )(r0n+r0p)
if x > 0

(14)

We now calculate an analytical approximation for the growth range (R), which is the distance
from the interface where cells have 50% of the growth rate they have at the interface:

µ(x = R) = 1
2 · µ(x = 0) (15)

as µ = µn·In

Kn+In
it follows that

In

∣∣
x=R

=
In

∣∣
x=0

2 + In

∣∣
x=0

(16)

where In

∣∣
x

≡ In(E(x)). Substituting Eq. 7 for IN (E) and Eq. 14 for E(x) we can thus solve
Eq. 16 for the growth range. To convert the growth range to the interaction range R, we can
simply multiply with the constant β ≈ 0.88:

R = β · r0n log


(
4rl

n − δrl
p

)(√
2δrl

pµn +
(

δrl
p

2 + rl
n

)2
+ δrl

p

2 + rl
n

)
− 4δrl

p

(
µn + rl

n

)
2rl

n

(
2rl

n − δrl
p

)
− δrl

pµn

 (17)

where

δ =
rl

pIC
p

2µnKn
· 2r0n

r0n + r0p
· ru

n + rl
n

ru
p + rl

p

(18)

=
rl

pIC
p

2µnKn
·

2
√

ru
p + rl

p√
ru

n + rl
n +

√
ru

p + rl
p

· ru
n + rl

n

ru
p + rl

p

(19)

The first term in the constant δ measures the leakage flux in producing cells (rl
pIC

p ) relative to
the flux needed by non-producing cells to grow well (2µnKn). The second term corresponds to
the diffusion length scale r0n in regions occupied by non-producing cells, relative to the average
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diffusion length scale (r0p + r0n)/2. The third term corresponds to the effective uptake rate
(active transport with rate ru

n together with diffusion across the membrane with rate rl
n) in

non-producing cells relative to that in producing cells.
Using assumption 2 and

Assumption 3 IC
p

Kn
≫ rl

n

rl
p

· r0n+r0p

r0n
· ru

p +rl
p

ru
n+rl

n
. This is identical to Assumption 1 in reference [1],

with the additional requirement that the difference in uptake and leakage rates between the two
cell types is not too large.

this can be simplified to:

R ≈ β

√
Deff

α(ru
n + rl

n) · ln
[

δ

(
1 +

√
1 + 4

δ

)
+ 4
]

(20)

In communities where both cell types have the same uptake and leakage rates, δ = ICrl

2Kµ = rl

γ ,
recovering our previous results (i.e. Eq. 1). Eq. 20 is a monotonically decreasing function of ru

n,
so the higher the uptake rate of the consumer, the lower the growth range. When ru

n and rl
n are

held constant, Eq. 20 is a monotonically increasing function of δ.

4 Estimating neighborhood size from interaction range

Above we derived the local rules for cross-feeding systems by calculating the maximum growth
range and the interaction range of cells. The interaction range determines the interaction neigh-
borhood of a cell by specifying the maximum distance, measured from surface of a cell, over
which cells can obtain nutrients. However, in the pair-approximation framework we derive in S2
Text the interaction neighborhood has to be specified as the number of cells that are contained
within it. These two metrics, i.e. the interaction range, measured in units of distance, and the
neighborhood size, measured as a number of cells, can be converted into each other using a simple
geometrical calculation.

For two-dimensional systems, we can estimate the number of neighbors (r, measured in
number of cells) from the interaction range (R, measured in units of length) using measured
values of the cell geometry and the cell area density ρ2D (i.e. the number of cells per area).
We assume that cells (as seen in a 2D projection) can be described as rectangles with semi-
spherical end-caps, with total length l and width w. The number of cells within the interaction
neighborhood (i.e. within the area within distance R from the cell-surface) is then given by:

r =
(

2R(l − w) + π
(
R + w

2
)2 − π

(
w
2
)2
)

· ρ2D (21)

We can make a similar estimate for three-dimensional systems. We assume that cells can
be described as cylinders with semi-spherical end-caps, with total length l and width w. The
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number of cells within the interaction neighborhood (i.e. within the area within distance R from
the cell surface) is then given by:

r =

(
R(R + w)(l − w) + 4

3

((
R + w

2
)3 −

(
w
2
)3
))

· ρ

(l − w)( w
2 )2 + w3

6

(22)
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