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This document outlines a mechanical model of an epithelial tissue with active material properties. In a departure from
many previous models, we represent the junctional cortices of individual cells explicitly, with adhesion forces acting
between the cortices of neighbouring cells.

Geometry and kinematics
The cell cortex is modelled as a morphoelastic rod. We consider three configurations for the cortex (Figure 1D):

e the initial configuration, @, parameterised by a Lagrangian coordinate, S e [0, ﬁ], representing the arc length.
This is the configuration that is adopted by the cortex when the cortex is undeformed, with neither external
forces or internal active stress.

e The reference (virtual) configuration, €, parameterised by S € [0, L]. This is the unstressed configuration
adopted by the cortex at time £. It is a conceptual configuration that the cortex adopts in response to active
(pre-) stresses, but in the absence of external forces and boundary conditions. Due to physical constraints, the
reference configuration may not be physically realisable in Euclidean space and can be defined only locally.
For example, active stresses in the cortex may lead to a self-intersecting geometry, but this would be prevented
in physical space.

e The current configuration, ¢, parameterised by s € [0,]. This is the actual configuration that is adopted by
the cortex in physical space, balancing pre-stresses, body loads and boundary conditions.

These configurations are related through a multiplicative decomposition. Material elements in the cortex are taken from
the initial, undeformed configuration, &, to the reference (virtual) configuration, €, by an active stretch:

a8
S’

The active stretch represents local changes in material length, with v > 1 for active growth and v < 1 representing
active contraction. Setting v < 1 represents active contractility in the cortex, for example modelling the effect of bound
myosin motors on the actin cytoskeleton. The mechanical effect of ~ is to impose a residual stress, or pre-stress, in the
cortex. Elastic stresses are generated when the cortex is subjected to external loading and boundary conditions, taking
material elements from the virtual, &, configuration to current, ¢, configuration via an elastic stretch:

Os
= —. 2
a=og 2
The total stretch, A, between the initial and current configuration then satisfies
0s 0S 0s
A=Y« — = — . 3)
K 05~ 9508 (

This decomposition is illustrated in Figure 1D.

In modelling the cortex as a morphoelastic rod, we follow the notation [1] and Chapter 6 in particular. Starting from
the full 3D description, we provide simplified 2D equations describing the mechanics of the cortex in the apical plane.
Under the rod representation, the cell cortex is defined geometrically by the position of the centre line, r(.5, t), relative
to the reference frame, mapping S to the fixed Cartesian basis {e1, e, €3} viar = xe; + yes + zes. In the general
frame, the rod is characterised by an orthonormal basis, {d1, d2, d3}. We set d3 to be aligned with the tangent of the
centre line, normal to the rod cross section, and d; and d, are chosen to lie in the principal directions of the cross
section, with dg = d; x da. The full kinematic description of the cortex is given by

or

% =V, (4a)
od; .

aS—uxdi fori=1,2,3, (4b)

where v is a stretch vector (|[v| > 0) and u is the Darboux vector. We detail these quantities under our specific
assumptions below.

We simplify the generalised three-dimensional formulation with some key assumptions. Since epithelial dynamics
are often driven in the apical plane, we model only the apical cortex and assume that it remains planar (torsion free).
Furthermore, we assume that the cortex is unshearable, has a circular cross section and is naturally straight (no reference
curvature). Importantly, however, the cortex is extensible. Under these conditions, ds = cos fe; + sin fes represents
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the rod tangent, d; is the rod normal and ds = e,. The angle, 0(S5), is the deflection of the cortex relative to the e;
axis. From these conditions, we have [[1]]
v = ads, (5a)
u = (0, us,0), (5b)
20 _ 96

where ugy = age = 5g is related to the Frenet curvature, %, of the cortex. Thus, the full kinematic description @) is
simplified to

r = ads, (62)
d, = —ugds, (6b)
d, =0, (6¢0)
d; = uady, (6d)

where derivatives w.r.t. S (virtual) are denoted (-)'.

Cortex mechanics

With respect to the reference (virtual) configuration the balance of linear and angular momentum in the cortex give
n’ + Next = 07 (7a)
m +r' xn+my =0 (7b)

where n(S) is the force in a cross-section of the cortex, ney: is the external force, m(S) is the moment and mey; is the
external moment. Following our assumptions above, the cortex behaves as a planar rod, extensible in the tangential ds
direction only, such that the force can be written

n-—=— Tlldl + E(oz — l)dg, (8)
where F is the extensional modulus of the cortex and n; is unknown. The cortex moment is reduced to
m = Buads, 9

where B is the bending modulus of the cortex. Using (8] and (9) with (7b), assuming no external moment, we find the
component of force normal to the cortex

B,
ny = —EUQ
B (10)
— _7011.
a
Then, the balance of linear momentum gives
Bo" /
l'l/ — (— o d1 +E(O{ — 1)d3>
B0 Bd/0" B0 1
z(— —+ = +E(a—1)9’)d1+( +Eo/)d3 an
= —fext
Thus we have
Be/// Balel/
- + 2 + E(a—1)0 = —foyt - dy, (12a)
B0'9”
+ Ea’' = —foy - d3. (12b)

These equations describe the position of the cortex in the deformed configuration relative to the reference (virtual)
configuration. However, for our purposes, it is more convenient to work with reference to the initial, undeformed
configuration, upon which we can impose the active pre-stresses. We can make the change of variables, writing

o= Lo (13)
Y
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and
9// _ l (19*>*
Y\
14
= 2 - ~3

where (-)* = 0(:)/0Sy. With respect to the undeformed configuration, we obtain a sixth-order system with four
unknowns (0, «, z,y):
Find (0, v, z,y) : s € [0,1] — R* for which

+ Byt (o — 1)0* + 7P gy (. y) - dy, (15a)

Eydaa* = —By0*0™ + By*(0%)? — v*afoi(z,y) - ds, (15b)
¥ =~yacosh, (15¢)

y* = yasinb, (15d)

where and (T5d) provide the position of the cortex in the current configuration. The system (I3)) is closed with the
following periodic end-point conditions: (6**,0*,0, a, x,y)|s=1 = (0**,0%,0, , z,y)|s=0 + (0,0, 27,0,0,0).

Cell-level stress

We define the stress tensor, o, over the region, &/, of the cell enclosed by the cell boundary, €. In the current
configuration, the stress tensor is symmetric and divergence free in equilibrium, satisfying & = V - (r ® o). Taking an
integral over the cell area and applying the divergence theorem we have [2/3]]

/o’dA:j{r@U-dl ds, (16)
o %

such that the cell-level stress tensor, averaged over the cell area, A, can be evaluated as

1 L
Ocell = 7/ re n’ ds. (17)
A Jo

The symmetry of stress is assured by the moment balance. The trace of the stress tensor dictates the sign of its larger
eigenvalue. We can therefore use the total cell pressure, Peeni = —tr(0cen)/2, to characterise the state of stress within
the cell: cells with Peejp > 0 (Peenp < 0) are under net tension (compression), with the principal axis of cell stress being
tensile (compressive).

Timescales and cortical viscosity

The cortex relaxation timescale, 7., ~ 50 s, is largely driven by the timescale of actin turnover [4)5]]. This timescale
is much shorter than the timescale over which rearrangement occurs (~ 20 min [6]]). We therefore assume that the
cortex behaves as a viscoelastic fluid and locally update the rest length of cortex segments to the current length, such
that A = 1, dissipating stretching energies and setting the simulation timestep equal to 7., Dynamics in the system
can then be driven by changes in the mechanical properties of cells (e.g. pre-strain, rest length and stiffness) or the
boundary conditions.

Many discrete models, such as vertex-based models, impose friction directly on cell vertices or other discrete material
points [7H9]]. This is traditionally imposed as a dissipative drag with the substrate. However, there is often little
justification that this is a dominant drag term in the system. Instead, we allow dissipation to occur through friction
between neighbouring cortices due to adhesion connections, in a similar mechanism that is known to occur in cell-
substrate interactions [[10J11]]. This dissipation is regulated by the timescale of adhesion molecules, T,q1, (discussed
below).

External forces: cell-cell adhesions

We consider the nature of the distributed external body forces, f.., acting on the cortex whose work must balance the
variation of mechanical energy in the cortex at equilibrium.
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Adhesions are a key mechanical feature that regulate tissue stability and are a primary source of external forces acting
on cell cortices. We model adhesion complexes at an effective level, imposing forces that may be a composite of
contributions from E-cadherin, a- and S-catenin, vinculin and other molecules linked to the adhesion complex. The
adhesion complex, as a whole, is modelled as a Hookean spring, of rest length &y, with a maximum binding length

611’1&)( .
Adhesion timescales

FRAP experiments have revealed that adhesion recovery times are fast (~ 20s [[12/13]]) compared with the timescales
of cortical relaxation and neighbour exchanges. We therefore impose that adhesion binding times in the model are fast,
such that unbound cortex locations form new bonds instantaneously whenever there is a neighbouring cortex within
Omax- We allow for the possibility of connection to a node that already has another adhesion.

In addition to recovery time, there is an additional — less considered — timescale associated with adhesion molecules: the
average lifetime of the adhesion complex, 7,q4. This timescale represents adhesion turnover, or the average time taken
from binding to unbinding. It is notably distinct from, and more difficult to measure than, the adhesion recovery time.
To our knowledge, there have been no explicit measurements of this additional timescale. However, the aggregated
force from adhesions acting on the cortex will be strongly affected by it. By considering the magnitude of 7,4y, relative
to the timescale of the cortex, 7.or, Wwe will model two limiting cases of behaviour.

Distribution of adhesions

In the limit of a continuum where adhesions have a line density over each cortex, the configuration of adhesion can
be represented by a density function p(s, s’) of two points S and S’ belonging respectively to cortices € and €’ to
be linked with an adhesion. This density function varies in time due to binding and unbinding events. Between these
events, as cortices deform, adhesion complexes remain attached to the same material point of the cortex: this is why p
is written in terms of reference configuration coordinate .S and not current configuration one s. Taking into account an
unbinding rate 1/7,41, and instantaneous rebinding, we reach Eq. (4) of main text:

0
Tadhafi(su Siit) = ®a(s:(5i),5;(55)) — p(Si, Sj5t) (18)

where ®g is the probability of all possible connections, which takes into account the current configuration rather than
the reference one. It is chosen as an exponential normalisation function, given by:

exp [—B0(si, s5)]

if IV 0
Dp(si,55) = Ng it Ns #0, (19)
0 else,
where:
L
No= 3 / H[5(s, 51)] exp [—B3(si, 51)] ds.
1<k<Nc“O0
kZi
Here H[6(s;, s;)] is a Heaviside step function, defined as
1 if 6<4
H — —= max 2
[5] {O otherwise, (20)

which removes the possibility of adhesion connections at a distance greater than d,,,,,. This takes the exponential ratio
of the length of a single adhesion over the sum of the lengths of all adhesions connected to s;. The normalisation
function thereby uses the length of each possible adhesion to generate a probability of connection, which is used as a
scaling factor to decrease the contribution from connections to cortices that are far away. The parameter 5 > 0 controls
the bias of the function, where larger values produce a stronger bias to adhesions that are nearby. In the limit 5 — oo
the nearest adhesion connection is the only possible one. For 5 = 1 we have the conventional softmax function in base
e and for § = 0 we have a uniform distribution. However, we suggest a value of 5 > 10, as smaller values do not
provide enough bias, leading to nearby adhesions having the weakest contribution to the total force.

Adhesive force

Numerically, we represent each adhesion as a single spring-like bond at a discretisation point, weighting its force by the
bond density around that point. Sufficiently far from cell vertices, the cortices of neighbouring cells are straight and



PREPRINT - JANUARY 18, 2022

parallel, and the spacing between them in the current configuration is dg. Let us consider two neighbouring cells, 7 and j.
At every position of coordinate s; on the cortex of cell ¢, an adhesion may connect it to an available binding location on
cortex j, at coordinate s, within a distance dy,ax. The line force density from a single connection between s; and s is

fopring (8i,85) = w (6(si,85) — do) T(si, 85) H[I(54, 55)], 21)

where w is the product of the stiffness of a single adhesion bond and the line density of bonds, d(s;, s;) = |r(s;) —r(s;)]
is the distance between cortex coordinates s; and s; and ¥(s;, s;) = (r(s;) —r(s;))/d(s;, s;) is a unit vector pointing
from s; to s;. We see that the adhesion bonds strongly couple the equilibrium equations of neighbouring cells (I2).

Slow adhesions: 7.4, > 7o In this case, cortical turnover is the fastest timescale and explicit adhesion bonds
connect two neighbouring cortices, keeping those portions of cortical material coupled across simulation time. Every
bond is tracked and can persist for multiple timesteps, with an average fraction 1 — 7o, /Tadn turning over every time
step, which corresponds to a stochastic implementation of Eq. (I8). An adhesion bond pairing position s; on cortex i to
s; on cortex j exerts then a force

fadh = fspringAsiASja (22)

where the force is averaged over the segment lengths, As; and As;. The total force acting at s; on cortex 7 is then the
sum of adhesion force to the set o/ (s;) of all points s; connected to that location :

foe = Y faan(si, ;). (23)

s;€d(s;)

When a location s; on the cortex does not have an adhesion connection (and only in this case), a new bond is formed to
the nearest neighbouring cortex location s} within dmax, if such a point exists. This corresponds to 5 — oo above, and
results in incrementing &/ (s}) by one (and is the only occasion of increasing /).

Fast adhesions: 7,4, < 7cor. When adhesion turnover is the fastest timescale, we have the limit where adhesion
binding is always in dynamic equilibrium, thus Eq. simplifies to p(S;, S5;t) = ®g(s:(5:),s;(S;)). In this
case, the adhesion force at a particular cortex location is the mean-field (average) force from all possible bindings
to neighbouring cortices within d,,,,. In this regime, individual adhesion bonds need not be tracked. Instead, the
cumulative adhesion force acting on the cortex is calculated based on the position of neighbouring cortices. Considering
a tissue comprising N¢ cells, labelled 7 = 1, ..., N¢, we define the total adhesion force at cortex coordinate s;, on cell
i, as the deterministic mean-field from all possible connections to neighbouring cortices within 0y,

lJ
foxe(si) = Z / D3(54, 55)fspring (i, 55) ds;. (24)
1<j<Ng 70
i
The sum is over all other cells in the tissue, but the density function is zero for points located farther than dy,,x.

Figure 1C provides an example of the possible adhesions connected to a point on the cortex, at a vertex, and the scaled
force produced by the adhesions under (24)).

Nondimensional governing equations

We nondimensionalise lengths on the adhesion rest length (equivalent to the bicellular spacing), dy, and use

§=000, w=F®  T=E7 25)

using tildes to denote dimensionless variables. The dimensionless force balance in the normal and tangential directions
(per unit S) is then

K:al// Ha/e/l

77 —+ a2 —+ (Oé — 1)9/ = —Text * dl, (263)
0/9//
o + 5 = o - dy. (26b)

where & = /B/E/dy is a nondimensional parameter corresponding to the relative length scale over which bending
affects the cortex around the vertex. The dimensionless force from a single adhesion bond is

Epring (50,5,) = @ (8(51,5,) — 1) £(5:. 5, H[3(51.5,)]: &)
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Solving with respect to the deformed configuration, we can define a dimensionless state vector of unknowns
W(s) = (0**,0%,0,, %, 7). From (15)), we are required to solve:

Find ¥ : 5 € [0,1] — RS such that

Fy(¢1,2,v3, 94,07, 05, 16)

(1
T = v : (28)
Fo(¥1,%2,3, %4, Y5, v6)
Ytha cos by
Y4 8in g
with
Fp(6°*,0%,0,a, 0", &,7) = 0" [37*771 + oz*ofl} + 0 [7**771 . 3(7*/7)2 . a*’y*'yflafl

+ w7 ala — 1))+ v I a fo (7, ) - dy, (29a)
Fo(07%,0%,0,0,%,7) = — ky 2a 10" 0" + ky*y 2o 1 (0%)? — v £t (2,9) - ds, (29b)
where d3 = cosfle; + sin fle; and d; = — sin fe; + cos fes. The system is subject to periodic boundary conditions

W(l) = ¥(0) + (0,0, 2,0,0,0)7.

Parameter selection

When initialising a cell, we must set a dimensionless reference length, relative to the spacing between apposed cortices
(set to 1 in the nondimensionalisation). In the Drosophila germ-band, cells have a radius of approximately 3.5 pm prior
to gastrulation [6/14]. Conversely, cells in the developing wing disc epithelium have a smaller radius of ~ 1 — 3 ym
(based on area measurements of 5 — 30 um? [15]]). Electron microscopy has found that the spacing between apposed
cell cortices is approximately 30 — 40 nm (estimated using scale bar in Figure 7 of [16]). These observations put the
ratio of the cell radius to the bicellular spacing in the range 25 — 110 . Cells with larger radii are more computationally
expensive to simulate. We therefore work in the lower bound and initialise cells (as a circle) with a dimensionless radius
of 35, as a representative value.

It is difficult to measure the cortex extensional and bending moduli and the stiffness of adhesion bonds in vivo. Figure 2B
of the main text demonstrates that the ratio of the dimensionless parameters, 2 /w, can be fitted to the size of openings
around cell vertices. To our knowledge, due to difficulties in achieving the required resolution, these measurements
have not yet been reported. Using STEAD microscopy, we do not observe significant openings around cell vertices.
We therefore choose order-of-magnitude estimates £ = 1 x 1072, w = 5 x 1072, which give §¥°"* ~ 1.43, for this
representative study.

Deriving the mechanical balance from the energetic formulation
In the main text, we present the model in terms of the mechanical energy (returning to the dimensional model):

%(8) = 7{ BBC(S)QJr ;Ee(S)z] ds, (30)

where ¢ = 6’. We demonstrate that this is equivalent to the rod formulation described above by deriving the balance of
linear and angular momentum in the cortex from %. We follow a variational approach, considering an infinitesimal
perturbation from an arbitrary configuration of the cortex. The first variation of the mechanical energy gives the forces
and torques in the cortex and at the boundaries:

L
5%:[m-6r'+n~5r]g—/ n - ér+m’ o’ dS. (31)

0

We derive these terms by taking the first variation of to get

L
U = / [Bede + Eede]dS. (32)
0
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Let us consider the bending and extensional terms separately. For the bending term, note that ¢ = /d} - d} such that

_ dy-ady
de=—+ (33)
= d, - 4d,.

Performing two rounds of integration by parts, we have
L L
/ Beoe dS :/ B6'd; - 6dy dS
0 0

L
= [BO'd, - 6ds], — / B(0"d, — 0'0'ds) - 6d5 dS
’ (34)

L "
B
= [BO'd, - 6ds], — /
O a

d, - 6r' dS
Vi L L 1 ’
= |:Btg/d1 (Sdg - B dl . (Sl‘:l +/ (Be dl) - or dS,
o 0 0 «

where we have used the torsion-free kinematic identities (6)) and the fact that adds = ér’ — (d3 - ér’)d3. For the
extensional term, we note that ¢ = v/t - r/ — 1 such that

s — r - or’
T . (35)
= d3 . 51‘/.

Again, using integration by parts we have

L L
/ EededS = / E(a—1)d; - 6r'dS
0 0 5 (36)
= [E(a—1) - or]p — / (E(a —1)ds3) - érdS.
0

Collecting terms in (34) and (36), referencing (31), we have no net moment and the force gradient in the cortex is given
by

" 4
Ill = (— BY d1 + E(a - 1)(213) s (37)
[0

which is equivalent to (TT). The terms evaluated at the boundaries impose moment and force continuity at the end-points.
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Numerical implementation and pseudocode

A pseudocode implementation of the model is provided in Algorithm 1.

Algorithm 1: Apposed-cortex model pseudocode

Result: Simulate dynamics of tissue with given pre-strain rule
Read tissue from file, or initialise new tissue;
for step in number of timesteps do
if Tadhesion = Tcor then
Prune adhesions with probability p = Tcor/Tadh;
Add new adhesions to unpaired cortex nodes;

end

Viscous cortex length update: dS «— ds (giving A = 1);
Determine pre-stretch +;

Apply pre-stretch: dS «— ~dS;
while tissue not in equilibrium do
if 7,qn < Teor then
Prune all adhesions;
Add new adhesions to all cortex nodes ;
end
for cell in tissue do
| Solve (28) for cell;
end
Check tissue equilibrium;

end

end

The initialisation of a new tissue can be done as described in the main text, by duplicating a single cell fitted within a
hexagon. Alternatively, it is also possible to initialise multiple circles at randomised locations within a global stencil
and relax them all simultaneously. However, this requires smaller changes in the adhesion strength since neighbouring
cells move simultaneously and must be prevented from overlapping, thus it requires increased computational time and
can be less numerically stable.

Simulations were performed in Python 3. The system (28) is solved using the solve_bvp function from the Scipy
library [17]. The function performs discretisation using a fourth-order collocation algorithm. The collocation system is
solved using a damped Newton method with an affine-invariant criterion function, as described in [[18]. The equations
for each cortex are solved in parallel, taking the current position of neighbouring cortices as possible binding locations.
This process is repeated, updating the rest length of the cortices at every time step, until a global equilibrium is reached.
Adaptive mesh refinement was used at every relaxation step, to ensure that node spacing remained numerically stable
and fast. Additional nodes were added in regions where the mesh spacing was greater than dy/4 and nodes were

removed where the spacing was less than 5o /20. The model parameters used for the simulations are given in Table 1.

Source code for running the published simulations can be found at|github.com/Alexander-Nestor-Bergmann/
appcom. Documentation and quick-start tutorials can be be found at appcom.readthedocs.io.


https://github.com/Alexander-Nestor-Bergmann/appcom
github.com/Alexander-Nestor-Bergmann/appcom
https://github.com/Alexander-Nestor-Bergmann/appcom
github.com/Alexander-Nestor-Bergmann/appcom
https://appcom.readthedocs.io
appcom.readthedocs.io
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