S3 Appendix.

Meal endocrine model

The meal model [1] is composed of two subsystems that represent insulin and glucose kinetics. The glucose subsystem has two compartments, plasma glucose mass G_p and glucose mass in slowly equilibrating tissues G_t . Along with modeling the exchange between these two compartments, subprocesses of the glucose subsystem describe the effects of endogenous glucose production (EGP), rate of glucose appearance (Ra), renal excretion of glucose (E), and insulin-independent and insulin-dependent glucose utilization (U_{ii} and U_{id} , respectively). The insulin subsystem has two main compartments, the insulin masses in plasma and liver (I_p and I_l , respectively). Subprocesses of the insulin subsystem include insulin secretion S and insulin degradation in both the liver and periphery.

 $Glucose \ subsystem$

$$\begin{cases} \dot{G}_{p}(t) = EGP(t) + Ra(t) - U_{\rm ii}(t) - E(t) - k_{1} \cdot G_{p}(t) + k_{2} \cdot G_{t}(t) & G_{p}(0) = G_{pb} \\ \dot{G}_{t}(t) = -U_{\rm id}(t) + k_{1} \cdot G_{p}(t) - k_{2} \cdot G_{t}(t) & G_{t}(0) = G_{tb} \\ G(t) = \frac{G_{p}}{V_{G}} & G(0) = G_{b} \end{cases}$$

$$(1)$$

In subsystem

. .

$$\begin{cases} I_l(t) = -(m_1 + m_3(t)) \cdot I_l(t) + m_2 I_p(t) + S(t) & I_l(0) = I_{lb} \\ \dot{I}_p(t) = -(m_2 + m_4) \cdot I_p(t) + m_1 \cdot I_l(t) & I_p(0) = I_{pb} \\ I(t) = \frac{I_p}{V_I} & I(0) = I_b \end{cases}$$
(2)

Intestinal absorption of glucose (Ra(t))

$$\begin{cases} Q_{\text{sto}}(t) = Q_{\text{sto1}}(t) + Q_{\text{sto2}}(t) & Q_{\text{sto}}(0) = 0\\ \dot{Q}_{\text{sto1}}(t) = -k_{gri} \cdot Q_{\text{sto1}}(t) + D \cdot d(t) & Q_{\text{sto1}}(0) = 0\\ \dot{Q}_{\text{sto2}}(t) = -k_{\text{empt}}(Q_{\text{sto}}) \cdot Q_{\text{sto2}}(t) + k_{gri} \cdot Q_{\text{sto1}}(t) & Q_{\text{sto2}}(0) = 0\\ \dot{Q}_{\text{gut}}(t) = -k_{\text{abs}} \cdot Q_{\text{gut}}(t) + k_{\text{empt}}(Q_{\text{sto}}) \cdot Q_{\text{sto2}}(t) & Q_{\text{gut}}(0) = 0\\ Ra(t) = \frac{f \cdot k_{\text{abs}} \cdot Q_{\text{gut}}(t)}{BW} & Ra(0) = 0 \end{cases}$$
(3)

Beta Cell Subprocess (insulin secretion is S, and insulin mass in the portal vein is I_{po})

$$S(t) = \gamma \cdot I_{po}(t) \tag{4}$$

$$\dot{I}_{po}(t) = -\gamma \cdot I_{po}(t) + S_{po}(t), \quad I_{po}(0) = I_{pob}$$
 (5)

$$S_{po}(t) = \begin{cases} Y(t) + K \cdot \dot{G}(t) + S_b, & \dot{G} > 0\\ Y(t) + S_b, & \dot{G} \le 0 \end{cases}$$
(6)

$$\dot{Y}(t) = \begin{cases} -\alpha \cdot [Y(t) - \beta \cdot (G(t) - h)], & \beta \cdot (G(t) - h) \ge -S_b \\ -\alpha \cdot Y(t) - \alpha \cdot S_b, & \beta \cdot (G(t) - h) < -S_b \end{cases}$$
(7)

Renal excretion of glucose

$$E(t) = \begin{cases} k_{e1} \cdot [G_p(t) - k_{e2}], & G_p(t) > k_{e2} \\ 0, & G_p(t) \le k_{e2} \end{cases}$$
(8)

Endogenous glucose production (EGP)

$$EGP(t) = k_{p1} - k_{p2} \cdot G_p(t) - k_{p3} \cdot I_d(t) - k_{p4} \cdot I_{po}(t)$$
(9)

$$EGP(0) = EGP_b \tag{10}$$

Hepatic extraction of insulin was fixed, and the following relations were used to evaluate exchange parameters with respect to HE and S(t).

$$HE(t) = -m_5 \cdot S(t) + m_6, \quad HE(0) = HE_b$$
 (11)

$$m_3(t) = \frac{\operatorname{HE}(t) \cdot m_1}{1 - \operatorname{HE}(t)} \tag{12}$$

Insulin delay

$$\begin{cases} \dot{I}_1(t) = -k_i \cdot [I_1(t) - I(t)] & I_1(0) = I_b \\ \dot{I}_d(t) = -k_i \cdot [I_d(t) - I_1(t)] & I_d(0) = I_b \end{cases}$$
(13)

Interstitial Insulin

$$\dot{X}(t) = -p_{2U} \cdot X(t) + p_{2U}[I(t) - I_b] \quad X(0) = 0$$
(14)

Glucose Utilization (Michaelis-Menten kinetics contribute to insulin-dependent glucose utilization)

$$V_m(X(t)) = V_{m0} + V_{mx} \cdot X(t)$$
(15)

$$K_m(X(t)) = K_{m0} + K_{mx} \cdot X(t)$$
(16)

$$U_{\rm id}(t) = \frac{V_m(X(t)) \cdot G_t(t)}{K_m(X(t)) + G_t(t)}$$
(17)

$$U_{\rm ii}(t) = F_{\rm cns} \tag{18}$$

Stomach emptying rate [2]

$$k_{\text{empt}}(Q_{\text{sto}}) = k_{\min} + \frac{k_{\max} - k_{\min}}{2} \cdot \{ \tanh[a_{\text{meal}}(Q_{\text{sto}} - b \cdot D)] - \tanh[b_{\text{meal}}(Q_{\text{sto}} - c \cdot D)] + 2 \}$$

$$(19)$$

$$\alpha_{\text{meal}} = \frac{5}{2 \cdot D \cdot (1 - b)} \tag{20}$$

$$\beta_{\text{meal}} = \frac{5}{2 \cdot D \cdot c} \tag{21}$$

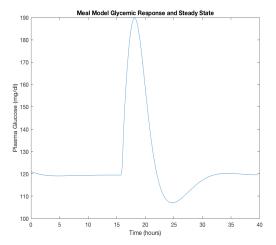


Fig 1. Simulation of post-prandial glucose response and return to equilibrium modeled by the meal model. This simulation was performed for a 45 g carbohydrate meal, and employed the initial conditions and parameter values reported by Dalla Man *et al.* [1]

Meal r	Meal model parameters		
Name	Nominal Value	Meaning	
BW	80 kg	Body Weight	
V_G	1.49 dl/kg	Plasma glucose space	
k_1	0.042 min^{-1}	Glucose exchange rate between rapidly and slowly equilibrating tissues	
k_2	0.071 min^{-1}	Glucose exchange rate between rapidly and slowly equilibrating tissues	
V_I	0.04 l/kg	Plasma insulin space	
m_1	0.379 min^{-1}	Insulin subsystem exchange rate	
m_2	$0.673 \ {\rm min}^{-1}$	Insulin subsystem exchange rate	
m_4	0.269 min^{-1}	Insulin subsystem exchange rate	
m_5	$0.0526 \min \text{kg/pmol}$	Insulin subsystem exchange rate	
m_6	0.8118	Insulin subsystem exchange rate	
HE_b	0.6	Hepatic insulin extraction	
k_{max}	0.0465 min^{-1}	Maximum emptying rate of glucose from stomach to intes- tine	
k_{min}	0.0076 min^{-1}	Minimum emptying rate of glucose from stomach to intestine	
k_{abs}	0.023 min^{-1}	Intestinal absorption rate	
k_{gri}	0.0465 min^{-1}	Rate of Grinding	
f	0.90	Fraction of intestinal absorption to appear in plasma	
b	0.68	Meal-dose dependency of emptying rate decline	
с	0.00023 mg^{-1}	Meal-dose dependency of emptying rate increase	
$\alpha_{\rm meal}$	0.013	Rate of approach to minimum stomach emptying rate	
$\beta_{\rm meal}$	0.05	Rate of approach to maximum stomach emptying rate	

Table 1. Parameter functions and values for the meal model estimated to best characterize patients with type 2 diabetes by Dalla Man et al..

Meal model parameters cont.			
Name	Nominal Value	Meaning	
k_{p1}	3.09 mg/kg/min	Extrapolated EGP at zero glucose and insulin	
k_{p2}	0.0007 min^{-1}	Liver glucose effectiveness	
<i>k</i> _{p3}	0.005 mg/kg/min per pmol/l	Amplitude of insulin action on the liver	
k_{p4}	0.0786 mg/kg/min per pmol/kg	Amplitude of portal insulin action on liver	
k_i	0.0066 min^{-1}	Delay between insulin signal and insulin action	
F_{cns}	1 mg/kg/min	Glucose uptake by brain and erythrocytes	
V_{m0}	4.65 mg/kg/min	Glucose utilization Michaelis-Menten nominal velocity	
V _{mx}	0.034 mg/kg/min per pmol/l	Glucose utilization Michaelis-Menten insulin-dependent ve- locity	
K_{m0}	466.21 mg/kg	Glucose utilization Michaelis-Menten nominal constant	
K _{mx}	0 mg/kg	Glucose utilization Michaelis-Menten insulin-dependent con- stant	
p_{2U}	0.0840 min^{-1}	Insulin action rate on peripheral glucose utilization	
K	0.99 pmol/kg per mg/dl	Pancreatic responsiveness to glucose rate of change	
α	$0.013 \ {\rm min}^{-1}$	Delay between glucose signal and insulin secretion	
β	0.05 pmol/kg/min per mg/dl	Pancreatic responsiveness to glucose	
γ	$0.5 \ {\rm min}^{-1}$	Exchange rate between portal vein and liver	
k_{e1}	0.0007 min^{-1}	Glomerular filtration rate	
k_{e2}	269 mg/kg	Renal threshold of glucose	

Table 2. Parameter functions and values for the meal model estimated to best characterize patients with type 2 diabetes byDalla Man et al. (continued).

References

- 1. Man CD, Rizza R, Corbelli C. Meal simulation model of the glucose-insulin system. IEEE Transactions on biomedical engineering. 2007;54:1740–1749.
- Dalla Man C, Camilleri M, Cobelli C. A System Model of Oral Glucose Absorption: Validation on Gold Standard Data. IEEE Transactions on Biomedical Engineering. 2006;53(12):2472–2478. doi:10.1109/TBME.2006.883792.