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1 Datasets: Protein Structures determined by X-ray Crystallography
and Nuclear Magnetic Resonance (NMR)

1.1 Protein Structures Determined by X-ray Crystallography

In the main text, our analysis is based on the protein structures determined by X-ray crystallogra-
phy. As introduced in the main text, our dataset (Dataset A) contains 13081 proteins determined
by X-ray crystallography. The PDB codes and the chain length of the proteins in Dataset A are
listed in the file “S1 PDB Xray.txt”. The chain length distribution of the proteins in Dataset A
is shown in Fig.A(a).

1.2 Protein Structures Determined by Solution NMR

Here, in the Supplementary Information, another dataset (Dataset B) is introduced to compare
with the proteins determined by X-ray crystallography. Dataset B contains 5078 proteins (no
DNA, RNA or hybrid structures) determined by solution nuclear magnetic resonance (NMR).
For every protein structure in Dataset B, there are no less than 4 different models describing
the structure of such a protein. In Dataset B, every two proteins share less than 30% sequence
similarity. The PDB codes and the chain length of the proteins in Dataset B are listed in the file
“S2 PDB NMR.txt”.

The chain length distribution of the proteins in Dataset B is shown in Fig.A(b). It is worth
noting that the solution NMR is employed in determining the structures of small proteins, most
of the proteins in Dataset B have chain length N < 200.

2 Fractal Dimensions of the Proteins

As discussed in the main text, there are accumulating evidence suggesting that the folded proteins
have a fractal nature [1, 2, 3]. With the 3D coordinate of all the atoms in a protein molecule (PDB
file), to determine the fractal dimension of the protein, one should first draw a sphere with radius
r, then calculate the number of residues n which are located within the sphere. As the radius r
increases, the number of residues n located inside the sphere also increases. To describe such a
dependence, the function n(r) is introduced to quantify the packing of residues. For a 3D dense
packing system, it is obvious that n(r) ∼ r3. Generalizing such a relation to d-dimensional systems,
one can conclude that n(r) ∼ rd. For every protein molecule, by doing linear fitting for the log-log
plot of n(r) vs. r, the fractal dimension d can be obtained.

The histogram of the fractal dimension is shown in Fig.A(c). For proteins determined by X-ray
crystallography, the average fractal dimension d ≈ 2.7. Such a result is consistent with the fractal
dimension obtained by scaling analysis. For proteins determined by NMR, the average fractal
dimension d ≈ 2.4. Such a result indicates that the proteins in the solution are packed in a lower
dimension than the crystallized proteins.
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Figure A. The statistics and scaling relations of native proteins in the datasets. (a) The
chain length distribution of the proteins in Dataset A (X-ray crystallography). In the histogram,
the width of each bin is 50. (b) The chain length distribution of the proteins in Dataset B (NMR).
In the histogram, the width of each bin is 25. (c) The fractal dimension distribution of the proteins
determined by X-ray crystallography and NMR. (d) The log-log plot of the radius of gyration Rg
vs. chain length N .

3 Radius of Gyration

For the folded proteins, even the local packing of residues shows a fractal nature (with fractal
dimension d < 3), the radius of gyration Rg vs. chain length N still behaves like dense packing
systems. The proteins determined by both X-ray crystallography and NMR have the relation
between Rg and N : Rg = r0N

α, where r0 is a characteristic length quantifying the packing of
amino acid residues. As shown in Fig.A(d), for proteins determined by NMR, r0 = 3.269Å, and
α = 0.341; for proteins determined by X-ray crystallography, r0 = 3.233Å, and α = 0.330.

4 The Scaling Relations in Protein Systems

Previously, based on the NMR-determined ensemble, it was observed that there are plenty of
scaling relations in the native fluctuations of the native proteins [4]. In the main text, based on
the elastic network models of the proteins, the scaling relations of the proteins determined by
X-ray crystallography are observed. Here, all the scaling relations and the values of the scaling
coefficients are listed in the table below. The values in the brackets are obtained by the scaling
analysis based on the NMR-determined structures [4].
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Figure B. The structure and spectrum of the generated polymer chains. (a) The
structure of a generated freely-jointed chain with N = 200 beads Rg = 36.02Å. (b) The gap
between the slowest and the second slowest eigenvalue for random polymer chains with different
Rg. Here, all the polymer chains have N = 200 beads. In the figure, the error bars denotes for
the standard error.

Scaling Relations Scaling Coefficients
Rg ∼ ξ ∼ Nα α ≈ 1.
Rg ∼ (s− sC)−ν (ν ≈ 1/3.)
χ ∼ (s− sC)−γ (γ ≈ 1.)
s− sC ∼ N−α/ν (α/ν ≈ 1.0.)
χ ∼ Nαγ/ν αγ/ν ≈ 1.
λ1 ∼ N−ζ ζ ≈ 1.
Q ∼ 1−K ·N−η η ≈ 0.231.

5 Generating the Structures of Ideal Polymers

In the main text, we have compared the spectrum of proteins with the polymers. Here in this
Supplementary Information, the detailed information of the generation of ideal (freely-jointed)
polymer is provided. The generation of polymer structures follows the method described by
Flechsig [5].

To generate the structure of the freely-jointed polymer, firstly, the position of the first bead
is fixed at point (0, 0, 0). Then, the next bead is placed at a random position near the previous
bead. For every bead i, there are three restrictions for the preceding bead i+ 1:

- The distance ri,i+1 from bead i to the preceding bead i + 1 have to lie within the interval
between dmin and dmax. In our calculation, we take parameters dmin = 4Å, and dmax = 5Å.

- The preceding bead i + 1 have to be separated from all previous beads (1, 2, 3 · · · , i) by at
least the distance dmin.

- The distance from preceding bead i+ 1 to the geometric center of all previous beads should
not exceed rmax.

According to the restrictions listed above, the polymer chains can be generated. In our com-
putation, a vary large rmax is selected to avoid strong spatial constraints. For a polymer chain
that made up of N = 200 beads, we take rmax = 200Å. In such a situation, the polymer chains
generated can be recognized as a random walk without other kinds of interactions among beads.
Such a model is called the freely-jointed chain (or ideal chain) model [6]. The structure of a
freely-jointed polymer with N = 200 beads is illustrated in Fig.B(a).

A similar method can be introduced to generate polymer chains with spatial constraints. With
different rmax, one can generate polymer chains at different radius of gyration Rg. We have
generated polymer chains with N = 200 beads, but with radius of gyrations Rg ranging from 14
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Å to 30. With the generated polymer structure, the vibration spectrum of a polymer chain is
obtained based on the elastic network model. But it is worth noting that there are no ”native
states” for a random polymer chain in the real world. As shown in Fig.B(b), as the Rg increases,
the gap between the slowest and the second slowest eigenvalue (quantified by λ2/λ1) also increases.

6 Distance-dependent Force Constants

In the main text, we had conducted our analysis based on the simplest version of the Gaussian
network model. Our correlation analysis and scaling analysis methods can also be extended to
other versions of elastic network models. In real applications, by introducing distance-dependent
force constants, refined models were suggested to have better predictions on the B-factors or the
dynamics of proteins. Among the refined elastic network models, we select the Harmonic Cα
potential model (HCA) [7, 8] and the parameter-free Gaussian network model (pfGNM) [9] to
compare with the simplest form of GNM.

HCA Model. In HCA model, the force constant κij between residue i and j is defined as:

κij =

{
a1r

0
ij − b, if r0ij < c (1)

a2(r0ij)
−6, if r0ij ≥ c (2)

where r0ij denotes the equlibrium distance between residue i and j, and parameter c is set to 4Å so
that the interactions between two sequential-neighboring Cα atoms are considered to be different
from other interactions. Other parameters (a1, a2 and b) are fitted from experimental data.

PfGNM. In pfGNM, the force constants by the inverse-square of the equilibrium distance
between the interacting nodes, that is:

κij = (r0ij)
−2. (3)

In the computation, one can also introduce other decaying exponent p, so that κij = (r0ij)
−p.

When p = 6, then the model would be very close to HCA model.
As shown in Fig.C(a) and C(c), with HCA model [7, 8], similar scaling relations (λ1 vs. N ,

and χ vs. N) as discussed in the main text can also be observed. However, with pfGNM (p = 2),
correct scaling relations cannot be reproduced. As shown in Fig.C(b) and C(d), by decreasing the
interaction range (increase parameter p), the scaling coefficients gradually approach the correct
value. Moreover, as shown in Fig.C(e) and C(f), pfGNM gives a much shorter correlation length.
That is to say, although pfGNM can have good predictions of crystallographic B-factors, it fails
to capture the long-range correlations and other important information in the solvated dynamics
of protein molecules.

7 The Robustness of Topological Descriptors

In the main text, scaling relations are observed in the relation between the topological descriptors
(average path length 〈l〉 and modularity Q) and the size of the proteins. It is worth noting that
the corresponding critical exponents are very robust to the changes in the cutoff distances. In the
main text, we select rC = 8Å. As shown in Fig.D(a) and Fig.D(b), with different cut-off distances
rc, the coefficient in the scaling relation between the average path length 〈l〉 (or modularity Q)
and chain length N keeps as a constant, showing that the topological analysis conducted in the
main text is robust to parameter changes.

8 Supporting Information: Long-range correlations in the flexibility of
proteins

In X-ray crystallography, the B-factors (or temperature factors) is introduced to measure the
deviations from an ideal crystal at zero temperature. Crystal disorder, finite-size effects, and
thermal fluctuations can all contribute to the B-factors. In previous studies, the B-factors of the
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Figure C. The protein dynamics predicted by the refined versions of elastic network
model (HCA model and pfGNM). (a) The power law relations between the slowest-mode
eigenvalue λ1 and the chain length N . (b) For different models, the critical exponents ζ. The
black dash line represents the HCA model (ζ ≈ 0.92), and the red line represents the pfGNM
with different decaying constant p. (c) The power law relations between the susceptibility chi and
the chain length N . (d) For different models, the critical exponents αγ/ν. The black dash line
represents the HCA model (αγ/ν ≈ 0.79), and the red line represents the pfGNM with different
decaying constant p. (e) For different models, the correlation length ξ vs. radius of gyration Rg.
(f) For different models, the correlation length ξ vs. chain length N .
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Figure D. Different cutoff distances rc shows similar scaling behaviors in the topolog-
ical descriptors of proteins. (a) With different cut-off distances (rC = 8, 9, 10Å), the average
path length 〈l〉 vs. chain length N shows similar scaling relation: 〈l〉 ∼ N0.33. (b) With different
cut-off distances, the relation between modularity Q and chain length N shows similar relation:
1−Q ∼ N0.27.

Cα atoms of the amino acid residues in proteins are believed to correlate with the vibrational
motion of the backbone [10, 11, 12]. In a protein molecule, a high B-factor indicates that the
atom exhibits flexibility higher than average, whereas low B-factors are believed to occur at more
rigid positions. According to the B-factor profile, information on a lot of biological processes such
as ligand binding, catalytic reactions, and protein-protein docking can be gathered [13, 14].

In this section, we neglect the effects of crystal disorder and take B-factor as an indicator of
the backbone flexibility. An example is shown in Fig.E(a), in a protein molecule, the residues
with low B-factors (colored in red) are usually located at ordered regions of the proteins, or they
are deeply buried inside the molecule. The atoms with high B-factors (colored in blue) generally
belong to disordered segments such as random coils or flexible linkers exposed at the surface of
the protein. Fig.E(b) shows the B-factor profile for every residue in the protein molecule.

Based on the information of B-factors, we evaluate the correlations in a protein molecule.
First, we estimate the magnitude of fluctuation of a residue 〈|∆~ri|〉 as the square root of the
B-factor. Then, one can normalize the magnitude of fluctuation into the Z-score, which is defined
by Zi = (〈|∆~ri|〉−µ)/σ, in which µ denote for the mean value of the magnitude of fluctuation, and
σ denote for the standard deviation. In Fig.E(c), the Z-score profile of the normalized magnitude
of fluctuations of residues is plotted. Thus, for the Z-score, the mean value fixed as 0, and the
standard deviation fixed as 1. Similar normalization has been applied in analyzing and predicting
the B-factors of the proteins [15, 16]. With the Z-score profile, we introduce the pairwise correlation

C
(Z)
ij = Zi · Zj for residue pair i − j. For every protein molecule, one can obtain the correlation

matrix C(Z), as shown in Fig.E(d). A positive value of C
(Z)
ij implies that the fluctuations of residue

i and j are both above or below the average, showing positive correlation; while a negative value

of C
(Z)
ij implies that only one of the residues has fluctuation above average, and the other below

average. With such a correlation matrix, similar to previous works [4, 17, 18] and our analysis
in the main text, the distance-dependent correlation function C(Z)(r) is defined by averaging
the correlations for residue pairs at mutual distance r. As shown in Fig.E(e), for every protein
molecule, based on the correlation matrix, one can obtain the distance-dependent correlation
function C(Z)(r). Such a function reflects how the correlations in the magnitude of fluctuations
of residue pairs decay with their mutual distances. Further, we define the correlation length ξ as
the distance where C(Z)(r) first decays to zero.

As shown in Fig.E(f), for proteins at different sizes, the correlation functions C(Z)(r) exhibit
similar behaviors. The correlation functions have high values at short distances, then decay to
zero, and continue to decay, showing anticorrelation for residue pairs at relatively long distances.
For proteins at different sizes, the correlation functions can be scaled by the Rg of the protein. As
shown in Fig.E(g), the scaled correlation functions C(Z)(r/Rg) for proteins of different sizes can
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Figure E. The correlations in the crystallographic B-factors of the proteins. (a) The
illustration of protein structure of the serine proteinase inhibitor CI2 (PDB code: 2CI2, Rg =
12.0 Å) colored by the B-factors of every residue. (b) The B-factors of all the residues in CI2. (c)
The Z-scores of all the residues in CI2. (c) The pairwise correlation matrix C(Z) of the protein
CI2. (e) The scattering plot (cyan) of the pairwise correlation CZij versus inter-residue distance rij
and the distance dependent correlation function C(Z)(r) of the protein CI2 (black), where the dots
denote the mean value of the correlation for residue pairs at distance r and the errorbars denote
the standard error the mean. The red arrow shows the correlation length ξ. (f) The averaged
correlation function C(Z)(r) for proteins with different radius of gyration Rg. (g) The normalized
correlation function C(Z)(r/Rg).

collapse well, indicating that the correlation length ξ of the proteins is proportional the radius
of gyration Rg of the proteins. The perfectly collapse of the correlation functions C(Z)(r/Rg)
provides additional evidence to the long-range correlations of proteins. It is worth noting that
for protein molecules, the high flexibility of residues at the surface boundary region may also
contribute to the decaying behavior of such a correlation function.
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