1	Supporting Information File S1
2	
3 4	A mechanistic integrative computational model of macrophage polarization: implications in human pathophysiology
5 6	Chen Zhao, Adam C. Mirando, Richard J. Sové, Thalyta X. Medeiros, Brian H. Annex, Aleksander S. Popel
7	
8	Figure S1: Complete model diagram with all nodes and reactions
9	Figure S2: Additional model calibration data of IFN-γ-driven pathway
10	Figure S3: Additional model calibration data of IL-4-driven pathway
11	Figure S4: Additional model calibration data of hypoxia-driven pathway
12	Figure S5: Additional in silico investigation of pathway feedback within M1-M2 network
13	Figure S6: Temporal response of M2 markers and transcription factors under hypoxia
14	Figure S7: Parameter sensitivities under high IL-4 production
15	Figure S8: Parameter distribution after bootstrapping
16	Table S1: Complete list of model reactions and parameter values
17	Table S2: Differential equations and initial conditions of all model nodes
18	Table S3: Summary of literature sources used in model calibration
19	Protocol S1: Additional information regarding model formulation and analysis
20	
21	
22	
23	
24	
25	
26	
27	
28	

29 Figure S1

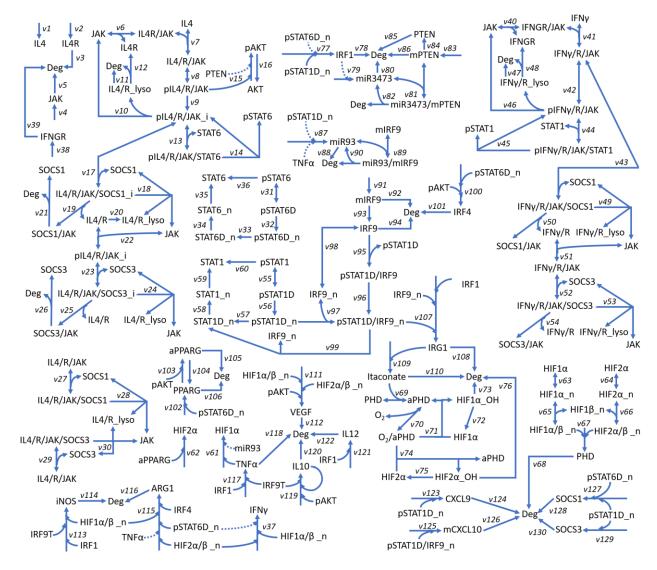


Figure S1. Complete model diagram with all nodes and reactions. Reaction rates are labeled (v#) and
correspond to the rate laws described in detail in Table S1. For the names of model nodes (reaction
species): 'X/Y' – complex formed by X and Y, 'pX' – phosphorylated form of species X, 'X_n' – species
X in nucleus, 'mX' – mRNA of species X, 'aX' – species X in its activated form, 'Deg' – degradation,
dashed arrows – inhibition. Reaction descriptions, parameters, rates and differential equations for all
model nodes are summarized in Tables S1 and S2.

41 Figure S2

42

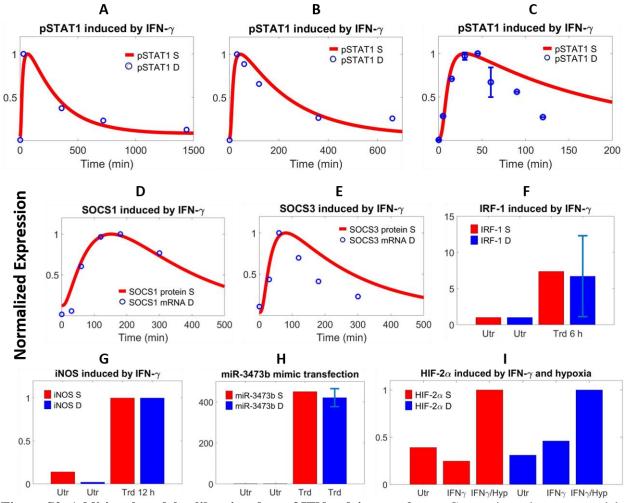
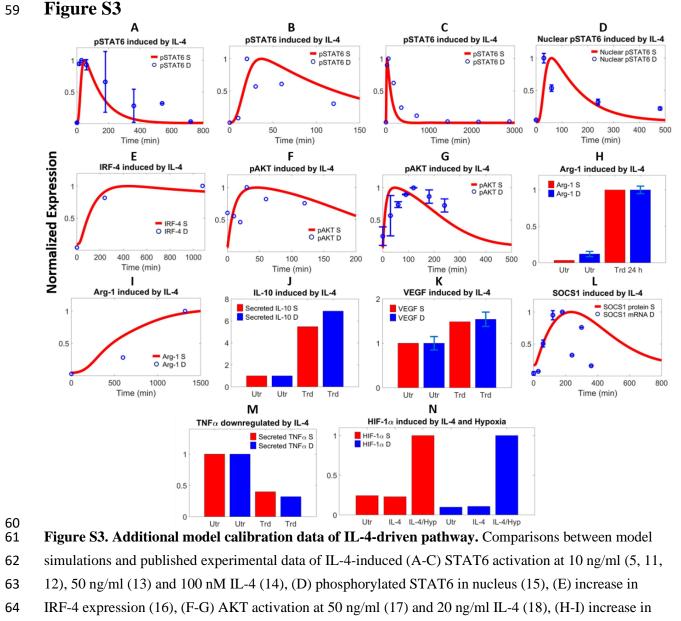



Figure S2. Additional model calibration data of IFN-γ-driven pathway. Comparisons between model
simulations and literature experimental data of IFN-γ-induced (A-C) STAT1 activation at 5 ng/ml (1), 10
ng/ml (2), and 20 ng/ml of IFN-γ (3, 4), (D-E) upregulation of SOCS1 and SOCS3 (data is mRNA
expression) (5), (F) increase in IRF-1 expression at 6 h (6), and (G) increase in iNOS expression at 12 h
(7). (H) Data and simulated expression level of miR-3473b at 24 h after mimic transfection (8). (I)
Hypoxia in combination with IFN-γ can significantly induce HIF-2α expression (for IFN-γ alone,
simulation suggested a mild decrease while data suggested an insignificant increase in HIF-2α) (9). (A-I)

50 All experimental data are measured in macrophage cell lines and values are for protein levels unless noted

- 51 otherwise. Y-axes show normalized expression respectively (A-E: simulations and data are normalized to
- 52 the maximum expression; F, H: normalized to the no-treatment/time 0 expression; G: normalized to the
- 53 expression at 12 h; I: normalized to the expression under IFN- γ treatment with hypoxia). (D-E) For
- 54 induction of SOCS1/3, data in terms of SOCS1/3 mRNA expression are compared with simulation
- 55 (SOCS1/3 protein level), given that SOCS proteins are highly labile (direct protein measurements are
- scarce) and that Wormald et al. reported a tight temporal correlation between signaling-induced
- 57 expression of SOCS1/3 protein and mRNA (10). S simulation, D literature data, Utr untreated, Trd –
- 58 IFN- γ treated, Hyp hypoxia.

- 65 Arg-1 production (15, 19), (J) increase in IL-10 production at 24 h (20), (K) increase in VEGF production
- 66 (21), (L) SOCS1 induction (5), and (M) inhibition of TNFα production at 24 h (20). (N) Simulation and
- 67 data show that hypoxia can stabilize HIF-1 α protein while IL-4 stimulation has no effect (9). (A-N) All
- 68 experimental data are measured in macrophage cell lines and values are for protein levels unless noted
- 69 otherwise. Y-axes show normalized expression respectively (A-G, I, L: simulations and data are
- normalized to the maximum expression; J, K, M: normalized to the no-treatment/time 0 expression; H:
- normalized to the expression at 24 h; N: normalized to the expression under IL-4 treatment with hypoxia).
- 72 (H) For Arg-1 production, data in terms of Arg-1 activity (formation of urea from arginine) is compared
- 73 with simulation (Arg-1 protein level). (K) For VEGF production, data in terms of intracellular VEGF
- 74 level is compared with simulation (secreted VEGF level). (L) For SOCS1 induction, data in terms of
- 75 SOCS1 mRNA level is compared with simulation (SOCS1 protein level), given the reasoning stated in
- Figures S2D-E. S simulation, D literature data, Utr untreated, Trd IL-4 treated, Hyp hypoxia.

77 Figure S4

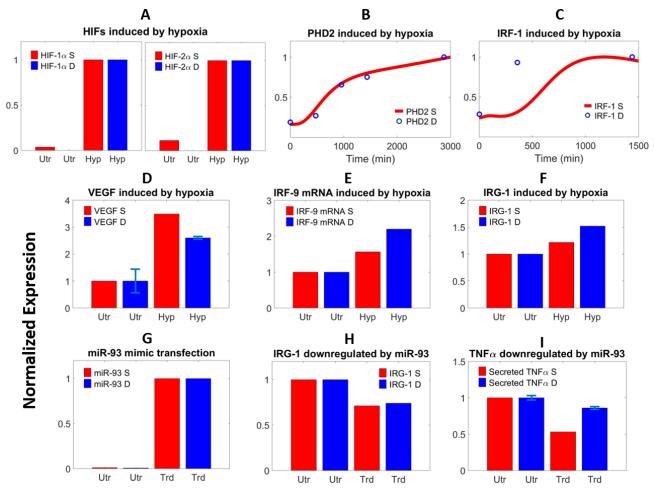
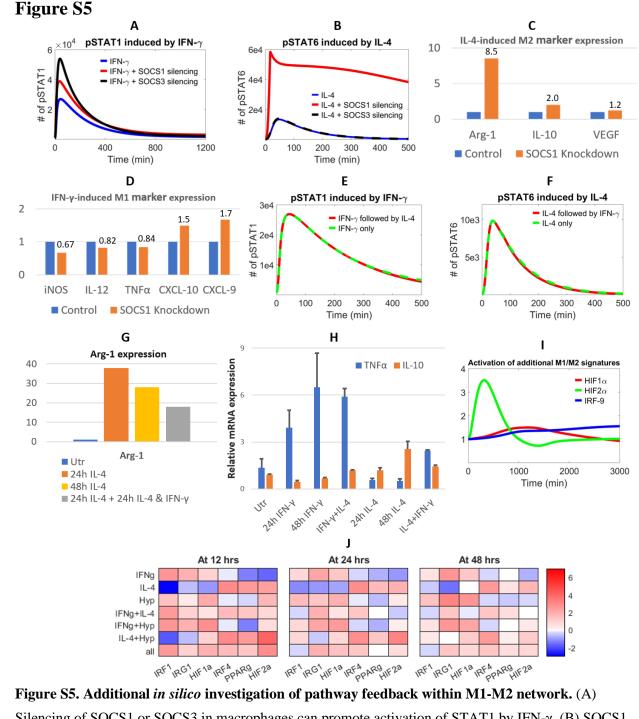
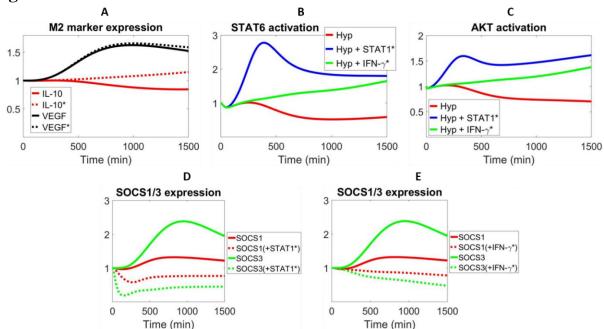



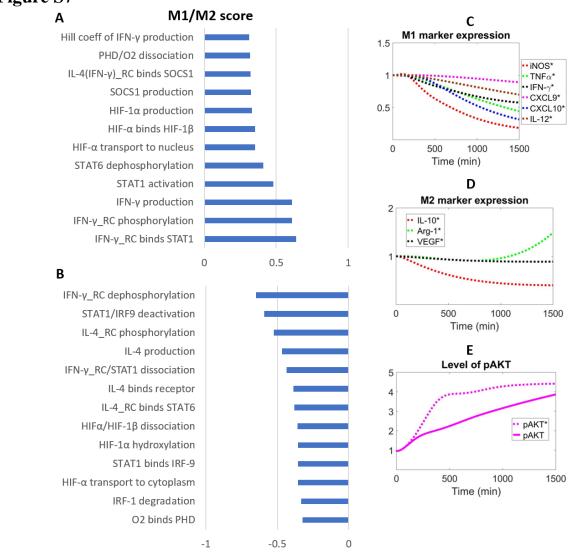
Figure S4. Additional model calibration data of hypoxia-driven pathway. Comparisons between 79 80 model simulations and literature experimental data of hypoxia-induced (A) stabilization of HIF-1 α and HIF-2α at 18 h (22), (B) PHD upregulation (23), (C) IRF-1 induction (24), (D) VEGF production at 24 h 81 82 (25), (E) de-suppression of IRF-9 (26) and (F) downstream upregulation of IRG-1 at 12 h (26). (G) Data 83 and simulated expression level of miR-93 before and after 24 h of mimic transfection, which leads to 84 downregulation of (H) IRG-1 abundance at 24 h (26). (I) Transfection of miR-93 mimic decreases TNFa 85 production at 12 h under hypoxia (26). (A-I) All experimental data are measured in macrophage cell lines 86 (except for B, which is in Hela cells) and values are for protein levels unless noted otherwise. Y-axes 87 show normalized expression respectively (A: simulation and data are normalized to the expression under 88 hypoxia; B, C: normalized to the maximum expression; D, E, F, H: normalized to the no-treatment expression; G: normalized to the miR-93 expression at 24 h after transfection; I: normalized to the 89 90 expression under 12 h of hypoxia without miR-93 mimic). (D) For VEGF production, data in terms of 91 intracellular VEGF level is compared with simulation (secreted VEGF level). (F and H) For IRG-1 92 regulation, data in terms of IRG-1 mRNA level is compared with simulation (IRG-1 protein level). S – 93 simulation, D – literature data, Utr – untreated, Trd – treated with miR-93 mimic, Hyp – hypoxia.



95 96

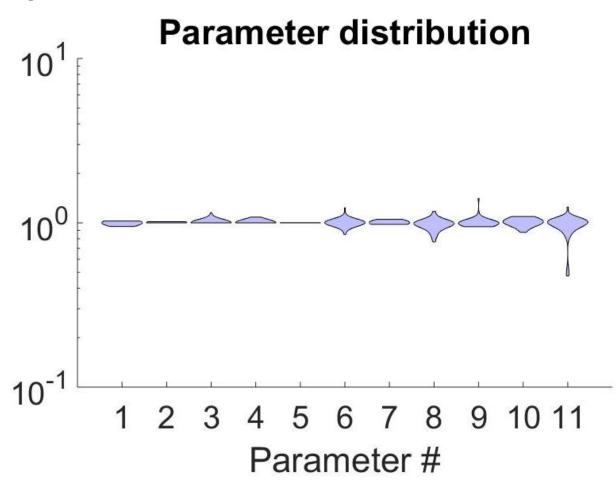
97 Silencing of SOCS1 or SOCS3 in macrophages can promote activation of STAT1 by IFN-y. (B) SOCS1

- 98 silencing, but not SOCS3 silencing, can markedly boost STAT6 activation by IL-4. (A-B) Silencing is
- 99 modeled as 0x initial level with 0x production. Knockdown of SOCS1 (modeled as 0.3x initial level with
- 0.3x production) (C) promotes IL-4-induced M2 marker expression and (D) differentially influences M1 100
- marker expression in response to IFN- γ . In the scenarios of IFN- γ stimulation followed by the addition of 101
- 102 IL-4 (at 4 h), or IL-4 stimulation followed by the addition of IFN- γ (at 1 hr), there is no obvious change of
- 103 (E) STAT1 or (F) STAT6 activation. (G) The addition of a second stimulus IFN-γ (at 24 h post IL-4
- 104 stimulation) can antagonize the expression pattern of Arg-1 induced by IL-4. (H) RT-qPCR analysis


- (results presented as mean + SEM, n=3) of TNF α and IL-10 gene expression in THP-1 cells stimulated 105 with 24 and 48 h of IFN-y (or IL-4), and 24 h of IFN-y (or IL-4) then another 24 h of IFN-y plus IL-4 106 107 (labeled as IFN γ +IL-4 or IL-4+IFN γ). (I) Temporal expression profiles of HIFs and IRF-9 when macrophages are stimulated with IFN- γ and IL-4 simultaneously. (J) Temporal relative protein expression 108 109 patterns of six M1-M2 signature transcription factors in macrophages under seven different stimulation conditions ('A+B' means simultaneous stimulation, 'all' means IFN-y+IL-4+hypoxia, all expression 110 levels are normalized to the untreated/time 0 levels and then log2 transformed). (A-J) All simulation 111 results are protein levels (except CXCL10 is mRNA level). (C,D,G,I) Y-axes show relative expression 112 (normalized to untreated/control/time 0 levels). Simulated treatment doses are 10 ng/ml IFN- γ and 10 113 ng/ml IL-4 for (A-D), 10 ng/ml IFN-y and 20 ng/ml IL-4 for (E-F), 20 ng/ml IFN-y and 20 ng/ml IL-4 for 114 (G), 10 ng/ml IFN- γ and 5 ng/ml IL-4 for (I-J). Utr – untreated, Hyp – hypoxia (2% oxygen for J). 115 116
- 117 Figure S6

119 Figure S6. Temporal response of M2 markers and transcription factors under hypoxia. (A)

120 Inhibition of IFN-γ production under hypoxia (dashed lines) can upregulation the expression of M2


- 121 markers IL-10 and VEGF (marginal effect), compared to hypoxia alone (solid lines). Simulations show
- 122 stronger temporal activation of (B) pSTAT6 and (C) pAKT under hypoxia in combination with IFN-γ
- 123 inhibition or STAT1 inhibition, compared to hypoxia alone. SOCS1 and SOCS3 expression are reduced
- 124 under hypoxia with either (D) STAT1 or (E) IFN-γ inhibition (dashed lines), compared to hypoxia alone
- 125 (solid lines). STAT1* means inhibition of STAT1 activation, IFN- γ * means inhibition of IFN- γ
- 126 production. Inhibition of IFN- γ is simulated by setting its production rate to 10% of the original value;
- 127 STAT1 inhibition is simulated as a 90% decrease in the binding rate between STAT1 and activated IFN-γ
- 128 receptor complex. (A-E) Expression levels are normalized to their respective t=0 values (e.g. normoxia,
- 129 unstimulated). Hyp hypoxia. All simulation results are protein levels.

PRCC values

Figure S7. Parameter sensitivities under high IL-4 production. (A-B) Sensitivity indices (top 25 132 positive and negative PRCC values with p<0.05) of model parameters that control M1 and M2 marker 133 expression in terms of the M1/M2 score under high IL-4 production (10x). In the parameter descriptions, 134 'X RC' means receptor complex formed by ligand X, receptor and JAK, 'X/Y' means complex formed 135 by X and Y. (C-D) Simulated relative time-course expression (dashed lines) of M1 and M2 markers when 136 137 macrophages are subjected to AKT inhibition (simulated as a 90% decrease in the AKT activation rate) under high IL-4 production. (E) Under the scenario of high IL-4 production, inhibition of STAT6 triggers 138 increased activation of AKT as a compensatory mechanism to further upregulate M2 marker expression. 139 (C-E) Marker expression levels are normalized to their respective t=0 values (e.g. normal IL-4 140 production, unstimulated). All simulation results are protein levels (except CXCL10 is mRNA level). (A-141 B) More details about the parameters listed can be found in Table S1 using the labels (positive -ka37, 142 kr70, kf17, k127, k61, kf64, kf63, k33, k45, k37, kf42, kf44; negative – kr42, k99, kf8, k1, kr44, kf7, kf13, 143 144 kr64, k71, kf95, kr63, k78, kf70; order is from top to bottom as displayed).

130 Figure S7

146

147 Figure S8. Parameter distribution after bootstrapping. Parameter estimate distributions (represented by violin plots) of the top 11 most sensitive parameters. The 11 parameters were re-estimated 50 times 148 149 following the resampling procedures described in the Materials and Methods section (all parameter values 150 are normalized to their respective original values for display, y-axis in log scale). During bootstrapping, parameter values are allowed to vary from 0.1x to 10x (of their original values). Parameter descriptions -151 152 #1. IFN- γ receptor dephosphorylation rate; 2. forward binding rate of activated IFN- γ receptor complex 153 with STAT1; 3. deactivation rate of STAT1/IRF9 complex in nucleus; 4. IFN-y receptor phosphorylation 154 rate; 5. reverse binding (e.g. dissociation) rate of activated IFN- γ receptor complex with STAT1; 6. forward binding rate of IL-4 (or IFN- γ) receptor complex with SOCS1; 7. dephosphorylation rate of 155 STAT6; 8. degradation rate of SOCS1/3-bound IL-4 (or IFN-γ) receptor complex; 9. rate of IL-4 receptor 156 phosphorylation; 10. STAT1 activation rate; 11. forward binding rate of IFN- γ receptor complex with 157 158 SOCS3. The 11 parameters are chosen based on the overall ranking of their absolute PRCC values (from 159 high to low) derived from the sensitivity analysis in three scenarios (IL-4 stimulation, IFN- γ stimulation, 160 and hypoxia).

No.	Reaction descriptions	Reaction flux details (v=)	Parameter values	Refs.
v1	IL-4 production	k1	$k1=0.2 \text{ min}^{-1}$	Fitted
v2	IL-4R production	k2	$k2=0.16 \text{ min}^{-1}$	Fitted
v3	IL-4R constitutive degradation	<i>k3</i> *[IL4R]	<i>k3</i> =0.007 min ⁻¹	Fitted
v4	JAK production	k4	$k4=50 \text{ min}^{-1}$	Fittee
v5	JAK constitutive degradation	<i>k</i> 5*[JAK]	<i>k5</i> =0.0005 min ⁻¹	(27)
vб	IL-4R pre-associates with JAK	kf6*[JAK]*[IL4R]- kr6*[IL4R/JAK]	<i>kf6</i> =4e-6 min ⁻¹ , <i>kr6</i> =0.0018 min ⁻¹	Fitteo
v7	IL-4 binds receptor	<i>kf</i> 7*[IL4]*[IL4R/JAK]- <i>kr</i> 7*[IL4/R/JAK]	$kf7=2e-7 \text{ min}^{-1},$ $kr7=0.01 \text{ min}^{-1}$	(28)
v8	IL-4 receptor complex phosphorylation	<i>kf</i> 8*[IL4/R/JAK]- <i>kr</i> 8*[pIL4/R/JAK]	$kf8=0.6 \text{ min}^{-1},$ $kr8=0.1 \text{ min}^{-1}$	Fittee
v9	Internalization of phosphorylated IL-4 receptor complex	k9*[pIL4/R/JAK]	<i>k9</i> =0.2 min ⁻¹	Fittee
v10	Shuttling of IL-4 receptor complex to lysosomes	<i>k10</i> *[pIL4/R/JAK_i]	<i>k10</i> =1 min ⁻¹	Fittee
v11	Degradation of IL-4 and IL-4R in lysosomes	<i>k11</i> *[IL4/R_lyso]	<i>k11</i> =0.3 min ⁻¹	Fittee
v12	Recycling of IL-4R	k12*[IL4/R_lyso]	<i>k12</i> =1 min ⁻¹	Fittee
v13	Binding of STAT6 with ligand- activated IL-4 receptor complex	<i>kf13</i> *[STAT6]*[pIL4/R/JAK _i]- <i>kr13</i> *[pIL4/R/JAK/STAT6]	$kf13=0.1 \text{ min}^{-1}, kr13=10 \text{ min}^{-1}$	Fitteo
v14	Activation of STAT6 by phosphorylation	<i>k14</i> *[pIL4/R/JAK/STAT6]	<i>k14</i> =8 min ⁻¹	Fittee
v15	Phosphorylation of AKT	<i>k15</i> *[AKT]*(1- [PTEN]/([PTEN]+ka15))* ([pIL4/R/JAK]/([pIL4/R/JAK]+kb15))	<i>k15</i> =1.16 min ⁻¹ , <i>ka15</i> =5000, <i>kb15</i> =4	Fitteo
v16	AKT dephosphorylation	<i>k16</i> *[pAKT]	<i>k16</i> =0.015 min ⁻¹	(29)
v17	Internalized IL-4 receptor complex binds SOCS1	<i>kf17</i> *[pIL4/R/JAK_i]*[SOCS 1]- <i>kr17</i> *[IL4/R/JAK/SOCS1_i]	<i>kf17</i> =0.008 min ⁻¹ , <i>kr17</i> =0.2 min ⁻¹	Fittee
v18	SOCS1 inhibits IL-4 signaling and shuttles IL-4 and receptor to lysosomes	<i>k10</i> *[IL4/R/JAK/SOCS1_i]		*
v19	SOCS1 sequesters JAK from the IL-4 receptor complex	<i>k19</i> *[IL4/R/JAK/SOCS1_i]	<i>k19</i> =0.03 min ⁻¹	Fitte
v20	Shuttling of internalized IL-4 and receptor to lysosomes	<i>k10</i> *[IL4/R]		*
v21	SOCS1 targets JAK for degradation	k21*[SOCS1/JAK]	<i>k21</i> =0.1 min ⁻¹	Fitte
v22	Internalized IL-4 and receptor associate with JAK to reactivate signaling	<i>kf</i> 6*[IL4/R]*[JAK]- <i>kr</i> 6*[pIL4/R/JAK_i]		*
v23	Internalized IL-4 receptor complex binds SOCS3	<i>kf23</i> *[pIL4/R/JAK_i]*[SOCS 3]- <i>kr17</i> *[IL4/R/JAK/SOCS3_i],	<i>kf23</i> =0.0004 min ⁻¹	Fittee *

Table S1

v24	SOCS3 inhibits IL-4 signaling and shuttles IL-4 and receptor to lysosomes	<i>k10</i> *[IL4/R/JAK/SOCS3_i]		*
v25	SOCS3 sequesters JAK from the IL-4 receptor complex	<i>k19</i> *[IL4/R/JAK/SOCS3_i]		*
v26	SOCS3 targets JAK for degradation	<i>k26</i> *[SOCS3/JAK]	<i>k26</i> =0.01 min ⁻¹	Fitted
v27	Surface IL-4 receptor complex binds SOCS1	<i>kf17</i> *[IL4/R/JAK]*[SOCS1]- <i>kr17</i> *[IL4/R/JAK/SOCS1]		*
v28	SOCS1-mediated shuttling of surface IL-4 and receptor to lysosomes	<i>k28</i> *[IL4/R/JAK/SOCS1]	<i>k28</i> =0.1 min ⁻¹	Fitted
v29	Surface IL-4 receptor complex binds SOCS3	<i>kf23</i> *[IL4/R/JAK]*[SOCS3]- <i>kr17</i> *[IL4/R/JAK/SOCS3]		*
v30	SOCS3-mediated shuttling of surface IL-4 and receptor to lysosomes	k28*[IL4/R/JAK/SOCS3]		*
v31	pSTAT6 dimerization	<i>kf31</i> *[pSTAT6]*[pSTAT6]- <i>kr31</i> *[pSTAT6D]	$kf31=0.002 \text{ min}^{-1},$ $kr31=1 \text{ min}^{-1}$	Fitted
v32	Activated STAT6 dimer transports to nucleus	<i>k32</i> *[pSTAT6D]	<i>k32</i> =0.4 min ⁻¹	Fitted
v33	Dephosphorylation of nuclear STAT6 dimer	<i>k33</i> *[pSTAT6D_n]	<i>k33</i> =0.01 min ⁻¹	(30)
v34	Dissociation of STAT6 dimer in nucleus	<i>kr31</i> *[STAT6D_n]		*
v35	Nuclear export of STAT6	<i>k35</i> *[STAT6_n]	<i>k35</i> =0.05 min ⁻¹	(31)
v36	Dephosphorylation of STAT6	<i>k33</i> *[pSTAT6]		*
v37	IFN-γ production	$k37^{*}([HIF1\alpha/\beta_n]+0.2^{*}[HIF 2\alpha/\beta_n])^{*}(1-$ [pSTAT6D_n]/([pSTAT6D_n])]+ka37))	<i>k37</i> =0.0288 min ⁻¹ , <i>ka37</i> =100	Fitted
v38	IFNGR production	k38	<i>k38</i> =1.22 min ⁻¹	Fitted
v39	IFNGR constitutive degradation	<i>k39</i> *[IFNGR]	<i>k39</i> =0.006 min ⁻¹	(32)
v40	IFNGR pre-associates with JAK	<i>kf</i> 6*[IFNGR]*[JAK]- <i>kr40</i> *[IFNGR/JAK]	<i>kr40</i> =0.002 min ⁻¹	Fitted *
v41	IFN-γ binds receptor	<i>kf41</i> *[IFNγ]*[IFNGR/JAK]- <i>kr7</i> *[IFNγ/R/JAK]	<i>kf41</i> =1.6e-7 min ⁻¹	(33, 34)*
v42	IFN-γ receptor complex phosphorylation	<i>kf42</i> *[IFNγ/R/JAK]- kr42*[pIFNγ/R/JAK]	$kf42=3 \text{ min}^{-1},$ $kr42=10 \text{ min}^{-1}$	Fitted
v43	IFN-γ receptor complex binds SOCS1	<i>kf17</i> *[IFNγ/R/JAK]*[SOCS1]- <i>kr17</i> *[IFNγ/R/JAK/SOCS1]		*
v44	STAT1 binds ligand-activated IFN-γ receptor complex	<i>kf44</i> *[STAT1]*[pIFNγ/R/JA K]- <i>kr44</i> *[pIFNγ/R/JAK/STAT1]	<i>kf44</i> =0.03 min ⁻¹ , <i>kr44</i> =3 min ⁻¹	Fitted
v45	STAT1 activation by phosphorylation	<i>k45</i> *[pIFNγ/R/JAK/STAT1]	<i>k</i> 45=2 min ⁻¹	Fitted
v46	Shuttling of IFN-γ receptor complex to lysosomes	<i>k46</i> *[pIFNγ/R/JAK]	<i>k46</i> =0.1 min ⁻¹	Fitted

v47	Degradation of IFN-γ and IFNGR in lysosomes	<i>k47</i> *[IFNγ/R_lyso]	<i>k47</i> =1 min ⁻¹	Fitted
v48	Recycling of IFNGR	$k12*[IFN\gamma/R_lyso]$		*
v49	SOCS1 inhibits IFN-γ signaling and shuttles IFN-γ and receptor to lysosomes	k46*[IFNγ/R/JAK/SOCS1]		*
v50	SOCS1 sequesters JAK from the IFN-γ receptor complex	<i>k19</i> *[IFNγ/R/JAK/SOCS1]		*
v51	IFN- γ and receptor bind JAK to reactivate signaling	$kf6*[IFN\gamma/R]*[JAK]-$ $kr40*[IFN\gamma/R/JAK],$		*
v52	IFN-γ receptor complex binds SOCS3	<i>kf52*</i> [IFNγ/R/JAK]*[SOCS3]]- <i>kr17</i> *[IFNγ/R/JAK/SOCS3]	<i>kf52</i> =0.004 min ⁻¹	Fitted *
v53	SOCS3 inhibits IFN-γ signaling and shuttles IFN-γ and receptor to lysosomes	k46*[IFNγ/R/JAK/SOCS3]		*
v54	SOCS3 sequesters JAK from the IFN- γ receptor complex	<i>k19</i> *[IFNγ/R/JAK/SOCS3]		*
v55	pSTAT1 dimerization	<i>kf55*</i> [pSTAT1]*[pSTAT1]- <i>kr31*</i> [pSTAT1D]	<i>kf55</i> =0.1 min ⁻¹	Fitted *
v56	Activated STAT1 dimer transports to nucleus	<i>k56</i> *[pSTAT1D]	<i>k56</i> =1 min ⁻¹	Fitted
v57	Dephosphorylation of nuclear STAT1 dimer	<i>k57</i> *[pSTAT1D_n]	<i>k57</i> =0.03 min ⁻¹	(35)
v58	Dissociation of STAT1 dimer in nucleus	<i>kr31</i> *[STAT1D_n]		*
v59	Nuclear export of STAT1	<i>k59</i> *[STAT1_n]	$k59=0.1 \text{ min}^{-1}$	Fitted
v60	Dephosphorylation of STAT1	<i>k57</i> *[pSTAT1]		*
v61	HIF-1α production is promoted by TNFα signaling and downregulated by miR-93	<i>k</i> 61*([TNFα]+ <i>ka</i> 61)*(1.4- [miR93]/([miR93]+ <i>kb</i> 61))	<i>k61</i> =0.0187 min ⁻¹ , <i>ka61</i> =800, <i>kb61</i> =1000	Fitted
v62	HIF-2α production is promoted by PPARγ	<i>k</i> 62*([aPPARG]/([aPPARG] + <i>k</i> a62))	<i>k</i> 62=178 min ⁻¹ , <i>k</i> a62=10000	Fitted
v63	HIF-1 α transport to nucleus	<i>kf</i> 63*[HIF1α]- <i>kr</i> 63*[HIF1α_n]	<i>kf63</i> =0.005 min ⁻¹ , <i>kr63</i> =0.018 min ⁻¹	(36)
v64	HIF-2 α transport to nucleus	<i>kf</i> 63*[HIF2α]- <i>kr</i> 63*[HIF2α_n]		*
v65	Nuclear HIF-1α binds HIF-1β	<i>kf</i> 64*[HIF1α_n]*[HIF1β_n]- <i>kr</i> 64*[HIF1α/β_n]	$kf64=5e-7 \text{ min}^{-1},$ $kr64=0.03 \text{ min}^{-1}$	Fitted; (36)
v66	Nuclear HIF-2α binds HIF-1β	<i>kf</i> 64*[HIF2α_n]*[HIF1β_n]- <i>kr</i> 64*[HIF2α/β_n]		*
v67	PHD production	$\frac{k67^{*}(0.0001 + [\text{HIF1}\alpha/\beta_n]^{2}/([\text{HIF1}\alpha/\beta_n]^{2} + ka67)^{*}[\text{HIF2}\alpha/\beta_n]^{2} + ka67)^{*}[\text{HIF2}\alpha/\beta_n]^{2} + kb67))}{\beta_n]^{2}/([\text{HIF2}\alpha/\beta_n]^{2} + kb67))}$	<i>k</i> 67=602 min ⁻¹ , <i>ka</i> 67=32600, <i>kb</i> 67=25400	Fitted
v68	PHD degradation	k68*[PHD]	<i>k68</i> =0.0008 min ⁻¹	(27)
v69	Itaconate influences PHD activation	<i>kf69</i> *[PHD]*[Itaconate]- <i>kr69</i> *[aPHD]	<i>kf</i> 69=8e-9 min ⁻¹ , <i>kr</i> 69=0.07 min ⁻¹	Fitted
v70	PHD binds oxygen	<i>kf70</i> *[aPHD]*[O ₂]- <i>kr70</i> *[O ₂ /aPHD]	<i>kf70</i> =7.14e-9 min ⁻¹ ¹ , <i>kr70</i> =10.8 min ⁻¹	Fitted; (36)
v71	HIF1a hydroxylation	<i>k</i> 7 <i>1</i> *[O ₂ /aPHD]*[HIF-1α]	<i>k71</i> =1.33e-5 min ⁻¹	Fitted

v72	HIF1α de-ubiquitination	<i>k</i> 72*[HIF1α_OH]	<i>k72</i> =0.03 min ⁻¹	Fitted
v73	Degradation of hydroxylated HIF-1α	<i>k73</i> *[HIF1α_OH]	<i>k73</i> =0.6 min ⁻¹	Fitted
v74	HIF2α hydroxylation	<i>k74</i> *[O ₂ /aPHD]*[HIF-2α]	$k74 = 5e - 6 \min^{-1}$	Fitted
v75	HIF2α de-ubiquitination	<i>k</i> 72*[HIF2α OH]		*
v76	Degradation of hydroxylated HIF-2 α	<i>k73</i> *[HIF2α_OH]		*
v77	STAT1 and STAT6 regulate IRF-1 production	k77*(([pSTAT1D_n]+[pSTA T1D/IRF9_n])/[pSTAT6D_n])/(([pSTAT1D_n]+[pSTAT1 D/IRF9_n])/[pSTAT6D_n]+k a77)	<i>k</i> 77=106 min ⁻¹ , <i>ka</i> 77=50	Fitted
v78	IRF-1 degradation	k78*[IRF1]	$k78=0.022 \text{ min}^{-1}$	(37)
v79	IFN-γ (through IRF-1) inhibits miR-3473 production	<i>k79</i> *(1- [IRF1] ² /([IRF1] ² + <i>ka79</i>))	k79=14.8 min ⁻¹ , ka79=40000	Fitted
v80	Degradation of miR-3473	<i>k80</i> *[miR3473]	<i>k80</i> =0.0012 min ⁻¹	(38)
v81	miR-3473 binds PTEN mRNA	<i>kf</i> 81*[miR3473]*[mPTEN]- <i>kr</i> 81*[miR3473/mPTEN]	<i>kf</i> 81=0.0001 min ⁻ ¹ , <i>kr</i> 81=0.06 min ⁻¹	(39)
v82	Degradation of miR3473-bound PTEN mRNA	k82*[miR3473/mPTEN]	<i>k</i> 82=0.1 min ⁻¹	Fitted
v83	Production of PTEN mRNA	k83	$k83=0.64 \text{ min}^{-1}$	Fitted
v84	PTEN translation	<i>k84</i> *[mPTEN]	$k84=2.32 \text{ min}^{-1}$	Fitted
v85	PTEN degradation	<i>k85</i> *[PTEN]	$k85=0.0003 \text{ min}^{-1}$	(27)
v86	PTEN mRNA constitutive degradation	<i>k86</i> *[mPTEN]	<i>k86</i> =0.003 min ⁻¹	(40)
v87	miR-93 production is downregulated by IFN-γ (represented by STAT1) and TNFα signaling	k87*(1- [TNFα]*[pSTAT1D_n] ² /([TN Fα] *[pSTAT1D_n] ² +ka87))	$k87=6050 \text{ min}^{-1},$ ka87=1000	Fitted
v88	miR-93 degradation	<i>k</i> 88*[miR93]	<i>k</i> 88=0.0018 min ⁻¹	(38)
v89	miR-93 binds IRF9 mRNA	<i>kf</i> 81*[miR93]*[mIRF9]- <i>kr</i> 81*[miR93/mIRF9]		*
v90	Degradation of miR93-bound IRF9 mRNA	<i>k</i> 82*[miR93/mIRF9]		*
v91	IRF9 mRNA production	k91	<i>k91</i> =0.5 min ⁻¹	Fitted
v92	IRF9 mRNA constitutive degradation	<i>k86</i> *[mIRF9]		*
v93	IRF9 translation	<i>k93</i> *[mIRF9]	<i>k93</i> =1.18 min ⁻¹	Fitted
v94	IRF9 degradation	<i>k94</i> *[IRF9]	<i>k94</i> =0.004 min ⁻¹	Fitted
v95	IRF9 binds activated STAT1 dimer in cytoplasm	<i>kf95*</i> [IRF9]*[pSTAT1D]- <i>kr95*</i> [pSTAT1D/IRF9]	<i>kf</i> 95=0.00013 min ⁻ ¹ , <i>kr</i> 95=1 min ⁻¹	Fitted
v96	Nuclear translocation of STAT1/IRF9 complex	<i>k96</i> *[pSTAT1D/IRF9]	<i>k96</i> =0.1 min ⁻¹	Fitted
v97	IRF9 binds activated STAT1 dimer in nucleus	<i>kf95*</i> [IRF9_n]*[pSTAT1D_n]- <i>kr95*</i> [pSTAT1D/IRF9_n]		*
v98	IRF9 translocation to nucleus	<i>k96</i> *[IRF9]- <i>kr</i> 98*[IRF9_n]	<i>kr</i> 98=0.01 min ⁻¹	Fitted
v99	Deactivation of STAT1/IRF9 complex in nucleus	<i>k99</i> *[pSTAT1D/IRF9_n]	<i>k99</i> =0.4 min ⁻¹	Fitted

v100	IRF4 production regulated by STAT6 and AKT	<i>k100</i> *[pSTAT6D_n]/([pSTA T6D_n]+ <i>ka100</i>)*[pAKT]/([p AKT]+ <i>kb100</i>)	<i>k100</i> =6840 min ⁻¹ , <i>ka10</i> 0=30000, <i>kb100</i> =20000	Fitted
v101	IRF4 degradation	<i>k101</i> *[IRF4]	$k101=0.0002 \text{ min}^{-1}$	(27)
v102	STAT6 promotes PPARγ production	<i>k102</i> *[pSTAT6D_n]/([pSTA T6D_n]+ <i>ka102</i>)	<i>k102</i> =107 min ⁻¹ , <i>ka102</i> =1000	Fitted
v103	AKT promotes PPARγ activation	<i>k103</i> *[PPARG]*[pAKT]/([p AKT]+ <i>ka103</i>)	<i>k103</i> =50 min ⁻¹ , <i>ka103</i> =10000	Fitted
v104	PPARγ deactivation	k104*[aPPARG]	<i>k104</i> =50 min ⁻¹	Fitted
v105	Degradation of activated PPAR γ	<i>k105</i> *[aPPARG]	$k105=0.0018 \text{ min}^{-1}$	(41)
v106	Degradation of PPARy	<i>k105</i> *[PPARG]		*
v107	IRF9 and IRF1 promotes IRG-1 production	<i>k107</i> *[IRF1]*([IRF9_n]+[pS TAT1D/IRF9_n]) ²	<i>k107</i> =4.77e-12 min ⁻¹	Fitted
v108	IRG1 degradation	<i>k108</i> *[IRG1]	$k108 = 6.2e - 4 \min^{-1}$	(27)
v109	IRG1 promotes itaconate production	<i>k109</i> *[IRG1] ²	<i>k109</i> =0.025 min ⁻¹	Fitted
v110	Itaconate degradation	<i>k110</i> *[Itaconate]	<i>k110</i> =0.005 min ⁻¹	Fitted
v111	HIF1/2 and AKT induce VEGF production	<i>k111</i> *([HIF1α/β_n]*[HIF2α/ β_n]+ <i>ka111</i>)*([pAKT]+ <i>kb11</i> <i>I</i>)	<i>k111</i> =3e-9 min ⁻¹ , <i>ka111</i> =29200, <i>kb111</i> =42700	Fitted
v112	Removal of secreted VEGF	<i>k112</i> *[VEGF]	<i>k112</i> =0.001 min ⁻¹	Fitted
v113	iNOS production is dependent on HIF1, IRF1 and type I IFN signaling (represented by IRF9)	<i>k113</i> *(0.02+[HIF1α/β_n]/([H IF1α/β_n]+ <i>ka113</i>))*([IRF1]/([IRF1]+ <i>kb113</i>))*([IRF9T]+1 5000)	<i>k113</i> =0.036 min ⁻¹ , <i>ka113</i> =4000, <i>kb113</i> =9000	Fitted
v114	iNOS degradation	<i>k114</i> *[iNOS]	<i>k114</i> =0.006 min ⁻¹	(42)
v115	ARG1 production is promoted by STAT6, IRF4 and HIFs while downregulated by TNFα	$k115^{([pSTAT6D_n]^{[IRF4]}]} + ka115^{([HIF1\alpha/\beta_n]+2^{[HIF1\alpha/\beta_$	<i>k115</i> =3.76e-9 min ⁻¹ , <i>ka115</i> =1.2e7, <i>kb115</i> =100000	Fitted
v116	ARG1 degradation	<i>k116</i> *[ARG1]	<i>k116</i> =0.0006 min ⁻¹	(43, 44)
v117	IRF1 and type I IFNs (represented by IRF9) can induce TNFα production	<i>k117</i> * [IRF1] ² /([IRF1] ² + <i>ka117</i>)*(30 000+[IRF9T]) ²	<i>k117</i> =7.2e-10 min ⁻ ¹ , <i>ka117</i> =1.6e6	Fitted
v118	Removal of secreted TNFa	<i>k118</i> *[TNFα]	<i>k118</i> =0.0008 min ⁻¹	Fitted
v119	IL-10 production is promoted by AKT, type I IFNs (represented by IRF9) and STAT3 (represented by secreted IL-10)	<i>k119</i> *[pAKT]*(2000+[IL10]) *([IRF9T]+15000)	<i>k119</i> =6.22e-13 min ⁻¹	Fitted
v120	Removal of secreted IL-10	<i>k120</i> *[IL10]	<i>k120</i> =0.0015 min ⁻¹	Fitted
v121	IRF1 promotes IL-12 production	<i>k121</i> *[IRF1] ²	$k121 = 5e - 8 \min^{-1}$	Fitted
v122	Removal of secreted IL-12	<i>k122</i> *[IL12]	<i>k122</i> =0.00033 min ⁻¹	Fitted
v123	STAT1 induces CXCL9 synthesis	<i>k123</i> *[pSTAT1D_n] ²	$k123=1.67e-6 \text{ min}^{-1}$	Fitted
v124	Removal of secreted CXCL9	k124*[CXCL9]	<i>k124</i> =0.0002 min ⁻¹	Fitted

v125	STAT1/IRF9 complex induces CXCL10 mRNA production	<i>k125</i> *[pSTAT1D/IRF9_n] ²	$k125 = 1e-6 \min^{-1}$	Fitted
v126	CXCL10 mRNA degradation	k126*[mCXCL10]	<i>k126</i> =0.0035 min ⁻¹	(40)
v127	STAT1 and STAT6 induce SOCS1 production	<i>k127</i> *[pSTAT1D_n]/([pSTA T1D_n]+ <i>ka127</i>)*[pSTAT6D_ n]/([pSTAT6D_n]+ <i>kb127</i>)	<i>k127</i> =13342 min ⁻¹ , <i>ka127</i> =6000, <i>kb127</i> =500	Fitted
v128	Degradation of SOCS1	k128*[SOCS1]	<i>k128</i> =0.004 min ⁻¹	(45)
v129	STAT1 induces SOCS3 production	<i>k129</i> *[pSTAT1D_n]/([pSTA T1D_n]+ <i>ka129</i>)	<i>k129</i> =6571 min ⁻¹ , <i>ka129</i> =6000	Fitted
v130	Degradation of SOCS3	<i>k130</i> *[SOCS3]	<i>k130</i> =0.05 min ⁻¹	Fitted

164	Table S1. Complete list of model reactions and parameter values. Reactions are formulated
165	mechanistically based on literature evidence (the labels $v\#$ here match with the labels in Figure S1 and
166	Table S2). As shown in the last column, numerical values of model parameters (~140 in total) are either
167	estimated from relevant published data (e.g. experimental measurements, prior models) or estimated
168	computationally through whole-model optimization ('fitted'). Certain parameter values are shared by
169	more than one reaction fluxes (marked by * in the last column).
. = 0	
170	
171	
172	
170	
173	
174	
175	
176	
177	
170	
178	
179	
180	
181	
TOT	

Table S2

Name of model node	Initial condition (in # of molecules)	Equation (d[x]/dt=)	Initial condition Refs.
VEGF	5223	v111-v112	Estimated from (46)
IFNγ	358	v37-v41	Estimated from (47)
IFNGR/JAK	20376	v40-v41	Total IFNGR estimated from (48, 49)
IFNGR	106	-v40+v48	Fitted
IFNy/R	1	v50+v54-v51	Fitted
IFNy/R/JAK	0	<i>v41-v42-v43+v51-v52</i>	Fitted
pIFNy/R/JAK	0	v42-v44	Fitted
STAT1	397262	-v44+v59+v60	Total STAT1 estimated from (49, 50)
pIFNy/R/JAK/STAT1	84	<i>v44-v45</i>	Fitted
pSTAT1	41	v45-v60-2*v55	Fitted
pSTAT1D	81	v55-v56-v95	Fitted
pSTAT1D_n	80	v56-v57-v97	Fitted
STAT1D_n	84	v57+v99-v58	Fitted
STAT1_n	1673	2*v58-v59	Fitted
SOCS1	3169	v127-v128-v17+v18+v21-v27+v28- v43+v49	Total SOCS1 estimated from (51)
IFNy/R/JAK/SOCS1	9	v43-v49-v50	Fitted
IFNγ/R_lyso	1	v46-v47-v48+v49+v53	Fitted
SOCS1/JAK	3	v50+v19-v21	Fitted
IRF9	2674	v93-v94-v95-v98	Total IRF9 estimated from (49)
IRF9_n	27001	v98-v97+v99	Fitted
pSTAT1D/IRF9	26	v95-v96	Fitted
pSTAT1D/IRF9_n	203	v96-v99+v97	Fitted
SOCS3	1735	v129-v130-v23+v24+v26-v29+v30- v52+v53	Total SOCS3 estimated from (51)
IFNy/R/JAK/SOCS3	3	v52-v53-v54	Fitted
SOCS3/JAK	8	v54+v25-v26	Fitted
IL4	288	v1-v7	Estimated from (52)
IL4R	16	v2-v6+v12	Fitted
IL4/R	0	v19+v25-v22	Fitted
IL4R/JAK	3478	v6-v7	Total IL4R estimated from (49)
IL4/R/JAK	0	v7-v8	Fitted
pIL4/R/JAK	0	v8-v9	Fitted
pIL4/R/JAK_i	0	v9-v10-v13+v14-v17+v22-v23	Fitted
IL4/R/JAK/SOCS1_i	0	v17-v18-v19	Fitted

IL4/R_lyso	0	v10-v11-v12+v18+v20+v24+v28+v30	Fitted
IL4/R/JAK/SOCS3_i	0	v23-v24-v25	Fitted
IL4/R/JAK/SOCS1	2	v27-v28	Fitted
IL4/R/JAK/SOCS3	0	v29-v30	Fitted
STAT6	59874	v35+v36-v13	Total STAT6
			estimated from (49,
			51)
pIL4/R/JAK/STAT6	0	v13-v14	Fitted
pSTAT6	26	v14-v36-2*v31	Fitted
pSTAT6D	1	<i>v31-v32</i>	Fitted
pSTAT6D_n	39	v32-v33	Fitted
STAT6D_n	0	v33-v34	Fitted
STAT6_n	16	2*v34-v35	Fitted
PTEN	64899	v84-v85	Estimated from (49)
IRF4	16460	v100-v101	Estimated from (49)
IL10	571	v119-v120	Estimated from (53)
JAK	99297	v4-v5-v6+v10+v18-	Total JAK estimated
		v22+v24+v28+v30-v40+v46+v49+v53	from (49)
ARG1	875428	v115-v116	Estimated from (49)
miR3473	1180	v79-v80-v81+v82	Estimated from (54)
mPTEN	8	v83-v86-v81	Total mPTEN
			estimated from (55)
miR3473/mPTEN	6	v81-v82	Fitted
iNOS	538	v113-v114	Fitted
HIF1a	640	<i>v61-v63-v71+v72</i>	Total HIF1α estimated
			from (56)
HIF1a_n	178	v63-v65	Fitted
$HIF1\alpha/\beta_n$	44	v65	Fitted
HIF1a_OH	42	v71-v72-v73	Fitted
HIF2a	878	v62-v64-v74+v75	Total HIF2 α estimated
			from (56)
HIF2a_n	244	v64-v66	Fitted
HIF2α/β_n	61	v66	Fitted
HIF2a_OH	22	v74-v75-v76	Fitted
HIF1β_n	14897	-v65-v66	Total HIF1 β estimated
DDADC	1.407		from (49)
PPARG	1437	v102-v103+v104-v106	Total PPARG estimated from (57)
aPPARG	782	v103-v104-v105	Fitted
IRF1	614	v705-v704-v705 v77-v78	Estimated from (49)
PHD	5470	v//-v/o v67-v68-v69	Total PHD estimated
	3470	<i>v07-v00-v09</i>	from (49)
O ₂	1.204e8	Constant	Estimated from (56)
O ₂ /aPHD	3088	v70-v71-v74	Fitted
aPHD	38846	v69-v70+v71+v74	Fitted
ai 11D	50040	VU7-V/U+V/ITV/7	I IIIUU

ΤΝFα	619	v117-v118	Estimated from (58- 60)
CXCL9	54	v123-v124	Fitted
mIRF9	9	v91-v92-v89	Total mIRF9 estimated from (61)
miR93/mIRF9	5	v89-v90	Fitted
miR93	841	v87-v88-v89+v90	Fitted
IL12	58	v121-v122	Estimated from (62)
mCXCL10	12	v125-v126	Estimated from (61)
AKT	198060	-v15+v16	Total AKT estimated from (49)
рАКТ	11942	v15-v16	Fitted
IRG1	3522	v107-v108	Estimated from (49)
Itaconate	6.214e7	v109-v110	Estimated from (63)
IRF9T (repeated assignment)	29904	[IRF9T]=[IRF9]+[IRF9_n]+ [pSTAT1D/IRF9]+[pSTAT1D/IRF9_n]	Fitted

Table S2. Differential equations and initial conditions of all model nodes. A summary of the model equations and initial conditions in terms of absolute copy numbers of all 80 model nodes (proteins, RNAs, complexes, etc.) derived from the 34 functionally unique species. The initial levels (and also the steady state levels) of 31 out of 34 unique species are estimated and calibrated with respect to literature data (using both direct measurements and indirect observations), and the model is simulated in control condition without external stimulation until equilibrium to obtain the initial levels (e.g. copy numbers) of all 80 model nodes. A cell volume of 1 pL is assumed when doing unit conversion calculations for O₂ and itaconate (64, 65). To reduce model complexity, it is assumed that transcription factors and enzymes in Hill-type reactions are not consumed, mRNAs are not consumed during translation, and oxygen level is constant during each simulation run.

Description of Data Used in Calibration	PMIDs of Sources
IFN-γ module (in response to IFN-γ treatments unless noted otherwise below)	
Surface-bound IFN-γ	2953810
Phosphorylation of JAK	12667213
Phosphorylation of STAT1	16473883, 26882544, 26299368, 28280036, 10490990
Expression of IRF-1	17293456, 18802049
Expression of iNOS	18655171, 9667738
TNFa secretion	8802049
IL-12 secretion	25950470
CXCL-9 secretion	25950470
CXCL-10 mRNA expression	25918247
Expression of miR-3473b	25092892
Itaconate expression	26829557
PTEN expression upon miR-3473b overexpression	25092892
HIF1 α expression upon IFN- γ treatment and hypoxia	20194441
SOCS1 mRNA expression	17093501
SOCS3 mRNA expression	17093501
HIF2α expression upon IFN-γ treatment and hypoxia	20194441
IL-4 module (in response to IL-4 treatments unless noted otherwise below)	
STAT6 phosphorylation	27731330, 17093501, 26894960, 26883801, 27464342, 25175012
Phosphorylated STAT6 in nucleus	23913966
IRF-4 expression	29871928, 23287596, 20580461
AKT activation	26894960, 27731330, 27507812
PPARy expression	29203644, 24385430
Arg-1 expression	23287596, 27117406, 23913966
Arg-1 activity	22348056
IL-10 secretion	28903394, 21753147
VEGF secretion	28842601
VEGF expression (intracellular)	28903394
TNFa secretion	28903394, 21753147
HIF2α expression upon IL-4 treatment and hypoxia	20194441
SOCS1 mRNA expression	17093501
HIF1α expression upon IL-4 treatment and hypoxia	20194441
Hypoxia module (in response to hypoxia unless noted otherwise below)	
HIF1a stabilization	24301659, 16533170, 20644254, 19454749
HIF2a stabilization	16533170, 20644254, 19454749
iNOS expression	28211523

Table S3

TNFa secretion	22566835
IFN-γ secretion	19234213
VEGF secretion	17065555
VEGF expression (intracellular)	28903394
miR-93 expression	28356443
IFN-γ secretion upon miR-93 overexpression and	28356443
hypoxia	
PHD2 expression	12912907
IRF-1 expression	11313373
IRF-9 mRNA expression	28356443
IRG-1 mRNA expression	28356443
IRG-1 mRNA expression upon miR-93 overexpression	28356443
TNFα secretion upon miR-93 overexpression and hypoxia	28356443

205 Table S3. Summary of literature sources used in model calibration. Listed here are the descriptions

and PMIDs of all the literature sources from which the model calibration datasets were extracted.

Protocol S1: Additional information regarding model formulation and analysis

224

225 Model Formulation

Macrophage polarization is a complex, dynamic multi-pathway process with numerous 226 227 feedbacks and cross-talks, which also makes its a highly suitable topic for systems biology modeling. Given the many relevant pathways and the large number of mechanistic details that 228 govern macrophage polarization, it makes sense to approach this problem in a stepwise manner 229 (e.g. first build a "beginner model", then gradually enrich the model with more pathways of high 230 231 importance in disease contexts). After careful analysis of literature knowledge, we ended up choosing three pathways (IFN- γ , IL-4, hypoxia) to model in the beginning step (as presented in 232 this paper), since IFN- γ and IL-4 are representative inducers of M1 and M2 phenotypes and 233 many experimental studies have tried to elucidate their downstream signaling and gene 234 235 regulation mechanisms (which provided a wealth of quantitative data that can be used to calibrate our "beginner model"), and also because that hypoxia is a key signature in the disease 236 237 areas that we are interested in (namely peripheral arterial disease and cancer) while its direct impact on macrophage polarization and connections with other macrophage pathways have not 238 239 been systematically characterized before.

240

241 Model Calibration

During model calibration, values of some model parameters are derived directly from literature 242 data and previous models (as shown in Table S1); for the remaining parameters with no literature 243 244 reference, we put in tentative values first and then hand-tuned the entire model extensively (by 245 adjusting parameter values and observing model response) until the model simulations achieved good visual agreements with all the respective calibration datasets (from the sources listed in 246 Table S3) simultaneously. In the meantime, the initial conditions of "unique" species in the 247 model have to stay within the allowed ranges (0.5x-2x of concentration values estimated from)248 literature as listed in Table S2, except for total HIF-1 α and HIF-2 α which we set that their resting 249 concentrations per cell should be less than a few nanomolar according to (56)). Then we 250 performed preliminary sensitivity analysis (for three cases, IL-4 or IFN- γ or hypoxia stimulation) 251 and collectively identified 101 parameters that have statistically significant (p<0.05) PRCC 252 values. Among the 101 parameters, 82 had no literature reference and global optimization using 253

patternsearch in MATLAB was then performed for those 82 parameter values (with 0.5x-2x as
the allowed ranges) with respect to all the calibration datasets (along with the initial condition
checks in every iteration) to generate the final parameter values. We rounded the final values to
three significant digits for all parameters (as listed in Table S1).

For the initial condition checks, we simulated the model for 100000 minutes to obtain species endpoint values (and check if they are within appropriate ranges as described above) and use these endpoint values as new initial conditions to generate simulations and calculate squared errors with respect to the literature data in every iteration of *patternsearch* optimization. Since we selected this very long time span, in each iteration these new initial conditions obtained would represent a set of species equilibrium states (of macrophages under normoxia without externally added stimuli) that can be compared with quantitative literature data.

265

266 Model Sensitivity Analysis and Uncertainty Quantification

For model sensitivity analysis, we used Latin Hypercube Sampling method with parameter 267 ranges of 0.5x-2x to calculate the PRCC values (with p=0.05 as the cutoff for statistical 268 significance) based on the algorithm and code published in (66). The output of interest in PRCC 269 270 calculations are "M1/M2 scores", which are the multiplication of six M1 markers ([iNOS]*[IFNγ]*[TNFα]*[IL12]*[CXCL9]*[mCXCL10]; [IFNγ] is removed when calculating 271 PRCCs in scenarios of IFN- γ stimulation) divided by the multiplication of three M2 markers 272 ([ARG1]*[VEGF]*[IL10]). For uncertainty quantification, each of the 50 re-sampled datasets 273 has 229 individual datapoints that covered all the experimental conditions used in model 274 calibration. For each datapoint, we assumed its value is within a distinct normal distribution with 275 a mean and a standard deviation (whenever possible, the mean and standard deviations are 276 calculated from the corresponding literature data that we gathered; for datapoints that only had 277 one value and no repeat, we considered that single value as the mean and assumed that the 278 standard deviation equals to 10% of that value). Then the 229 datapoint values in each re-279 sampled dataset were compiled in order by generating random numbers from the 229 normal 280 281 distributions. The 50 re-sampled datasets were then fed into the optimization algorithm to obtain 50 sets of new parameter estimates (as described in Materials and Methods). 282

283

285 **References for Supporting Information**

286 Majoros A, Platanitis E, Szappanos D, Cheon H, Vogl C, Shukla P, et al. Response to interferons 1. 287 and antibacterial innate immunity in the absence of tyrosine-phosphorylated STAT1. EMBO Rep. 288 2016;17(3):367-82. Kim HS, Kim DC, Kim HM, Kwon HJ, Kwon SJ, Kang SJ, et al. STAT1 deficiency redirects IFN 289 2. 290 signalling toward suppression of TLR response through a feedback activation of STAT3. Sci Rep. 291 2015;5:13414. 292 3. Li X, Zhang Z, Li L, Gong W, Lazenby AJ, Swanson BJ, et al. Myeloid-derived cullin 3 promotes 293 STAT3 phosphorylation by inhibiting OGT expression and protects against intestinal inflammation. J Exp 294 Med. 2017;214(4):1093-109. 295 4. Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma 296 transcriptional responses without inhibiting activation of STAT1. J Immunol. 1999;163(7):3898-906. 297 5. Dickensheets H, Vazquez N, Sheikh F, Gingras S, Murray PJ, Ryan JJ, et al. Suppressor of cytokine 298 signaling-1 is an IL-4-inducible gene in macrophages and feedback inhibits IL-4 signaling. Genes Immun. 299 2007;8(1):21-7. 300 6. Vila-del Sol V, Punzon C, Fresno M. IFN-gamma-induced TNF-alpha expression is regulated by 301 interferon regulatory factors 1 and 8 in mouse macrophages. J Immunol. 2008;181(7):4461-70. 302 Ohata T, Fukuda K, Murakami A, Ohigashi H, Sugimura T, Wakabayashi K. Inhibition by 1'-7. 303 acetoxychavicol acetate of lipopolysaccharide- and interferon-gamma-induced nitric oxide production 304 through suppression of inducible nitric oxide synthase gene expression in RAW264 cells. Carcinogenesis. 305 1998;19(6):1007-12. 306 Wu C, Xue Y, Wang P, Lin L, Liu Q, Li N, et al. IFN-gamma primes macrophage activation by 8. 307 increasing phosphatase and tensin homolog via downregulation of miR-3473b. J Immunol. 308 2014;193(6):3036-44. 309 Takeda N, O'Dea EL, Doedens A, Kim JW, Weidemann A, Stockmann C, et al. Differential 9. 310 activation and antagonistic function of HIF-{alpha} isoforms in macrophages are essential for NO 311 homeostasis. Genes Dev. 2010;24(5):491-501. 312 10. Wormald S, Zhang JG, Krebs DL, Mielke LA, Silver J, Alexander WS, et al. The comparative roles 313 of suppressor of cytokine signaling-1 and -3 in the inhibition and desensitization of cytokine signaling. J 314 Biol Chem. 2006;281(16):11135-43. Covarrubias AJ, Aksoylar HI, Yu J, Snyder NW, Worth AJ, Iyer SS, et al. Akt-mTORC1 signaling 315 11. 316 regulates Acly to integrate metabolic input to control of macrophage activation. Elife. 2016;5. 317 12. Yao Y, Wang Y, Zhang Z, He L, Zhu J, Zhang M, et al. Chop Deficiency Protects Mice Against 318 Bleomycin-induced Pulmonary Fibrosis by Attenuating M2 Macrophage Production. Mol Ther. 319 2016;24(5):915-25. 320 Rex J, Albrecht U, Ehlting C, Thomas M, Zanger UM, Sawodny O, et al. Model-Based 13. 321 Characterization of Inflammatory Gene Expression Patterns of Activated Macrophages. PLoS Comput 322 Biol. 2016;12(7):e1005018. 323 14. Zhu L, Yang T, Li L, Sun L, Hou Y, Hu X, et al. TSC1 controls macrophage polarization to prevent 324 inflammatory disease. Nat Commun. 2014;5:4696. 325 Sheldon KE, Shandilya H, Kepka-Lenhart D, Poljakovic M, Ghosh A, Morris SM, Jr. Shaping the 15. 326 murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter. J 327 Immunol. 2013;191(5):2290-8. 328 El Chartouni C, Schwarzfischer L, Rehli M. Interleukin-4 induced interferon regulatory factor (Irf) 16. 329 4 participates in the regulation of alternative macrophage priming. Immunobiology. 2010;215(9-10):821-330 5. 331 17. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 332 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 333 2016;7:13130.

334 18. McCormick SM, Gowda N, Fang JX, Heller NM. Suppressor of Cytokine Signaling (SOCS)1 335 Regulates Interleukin-4 (IL-4)-activated Insulin Receptor Substrate (IRS)-2 Tyrosine Phosphorylation in 336 Monocytes and Macrophages via the Proteasome. J Biol Chem. 2016;291(39):20574-87. 337 19. Zanin RF, Braganhol E, Bergamin LS, Campesato LF, Filho AZ, Moreira JC, et al. Differential 338 macrophage activation alters the expression profile of NTPDase and ecto-5'-nucleotidase. PLoS One. 339 2012;7(2):e31205. 340 20. Zhang W, Xu W, Xiong S. Macrophage differentiation and polarization via phosphatidylinositol 3-341 kinase/Akt-ERK signaling pathway conferred by serum amyloid P component. J Immunol. 342 2011;187(4):1764-77. 343 21. Lee C, Bae SS, Joo H, Bae H. Melittin suppresses tumor progression by regulating tumor-344 associated macrophages in a Lewis lung carcinoma mouse model. Oncotarget. 2017;8(33):54951-65. 345 22. Fang HY, Hughes R, Murdoch C, Coffelt SB, Biswas SK, Harris AL, et al. Hypoxia-inducible factors 346 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood. 347 2009;114(4):844-59. 348 Berra E, Benizri E, Ginouves A, Volmat V, Roux D, Pouyssegur J. HIF prolyl-hydroxylase 2 is the 23. 349 key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia. EMBO J. 2003;22(16):4082-350 90. 351 24. Carta L, Pastorino S, Melillo G, Bosco MC, Massazza S, Varesio L. Engineering of macrophages to 352 produce IFN-gamma in response to hypoxia. J Immunol. 2001;166(9):5374-80. 353 25. Mei Y, Thompson MD, Shiraishi Y, Cohen RA, Tong X. Sarcoplasmic/endoplasmic reticulum Ca2+ 354 ATPase C674 promotes ischemia- and hypoxia-induced angiogenesis via coordinated endothelial cell and 355 macrophage function. J Mol Cell Cardiol. 2014;76:275-82. 356 26. Ganta VC, Choi MH, Kutateladze A, Fox TE, Farber CR, Annex BH. A MicroRNA93-Interferon 357 Regulatory Factor-9-Immunoresponsive Gene-1-Itaconic Acid Pathway Modulates M2-Like Macrophage 358 Polarization to Revascularize Ischemic Muscle. Circulation. 2017;135(24):2403-25. 359 27. Cambridge SB, Gnad F, Nguyen C, Bermejo JL, Kruger M, Mann M. Systems-wide proteomic 360 analysis in mammalian cells reveals conserved, functional protein turnover. J Proteome Res. 361 2011;10(12):5275-84. 362 28. Bankaitis KV, Fingleton B. Targeting IL4/IL4R for the treatment of epithelial cancer metastasis. 363 Clin Exp Metastasis. 2015;32(8):847-56. 364 29. Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly dephosphorylates Akt, 365 promotes apoptosis, and suppresses tumor growth. Mol Cell. 2005;18(1):13-24. 366 30. Hanson EM, Dickensheets H, Qu CK, Donnelly RP, Keegan AD. Regulation of the 367 dephosphorylation of Stat6. Participation of Tyr-713 in the interleukin-4 receptor alpha, the tyrosine 368 phosphatase SHP-1, and the proteasome. J Biol Chem. 2003;278(6):3903-11. 369 31. Chen HC, Reich NC. Live cell imaging reveals continuous STAT6 nuclear trafficking. J Immunol. 370 2010;185(1):64-70. 371 32. Londino JD, Gulick DL, Lear TB, Suber TL, Weathington NM, Masa LS, et al. Post-translational 372 modification of the interferon-gamma receptor alters its stability and signaling. Biochem J. 373 2017;474(20):3543-57. 374 Ping Z, Qi J, Sun Y, Lu G, Shi Y, Wang X, et al. Crystal structure of the interferon gamma receptor 33. 375 alpha chain from chicken reveals an undetected extra helix compared with the human counterparts. J 376 Interferon Cytokine Res. 2014;34(1):41-51. 377 34. Nickoloff BJ. Binding of 125I-gamma interferon to cultured human keratinocytes. J Invest 378 Dermatol. 1987;89(2):132-5. 379 35. Zhu W, Mustelin T, David M. Arginine methylation of STAT1 regulates its dephosphorylation by T 380 cell protein tyrosine phosphatase. J Biol Chem. 2002;277(39):35787-90. 381 Zhao C, Isenberg JS, Popel AS. Transcriptional and Post-Transcriptional Regulation of 36. 382 Thrombospondin-1 Expression: A Computational Model. PLoS Comput Biol. 2017;13(1):e1005272.

383 37. Eckhardt I, Weigert A, Fulda S. Identification of IRF1 as critical dual regulator of Smac mimetic-384 induced apoptosis and inflammatory cytokine response. Cell Death Dis. 2014;5:e1562. 385 38. Marzi MJ, Ghini F, Cerruti B, de Pretis S, Bonetti P, Giacomelli C, et al. Degradation dynamics of 386 microRNAs revealed by a novel pulse-chase approach. Genome Res. 2016;26(4):554-65. 387 Wang X, Li Y, Xu X, Wang YH. Toward a system-level understanding of microRNA pathway via 39. 388 mathematical modeling. Biosystems. 2010;100(1):31-8. 389 40. Sharova LV, Sharov AA, Nedorezov T, Piao Y, Shaik N, Ko MS. Database for mRNA half-life of 19 390 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic 391 stem cells. DNA Res. 2009;16(1):45-58. 392 Waite KJ, Floyd ZE, Arbour-Reily P, Stephens JM. Interferon-gamma-induced regulation of 41. 393 peroxisome proliferator-activated receptor gamma and STATs in adipocytes. J Biol Chem. 394 2001;276(10):7062-8. 395 Kolodziejski PJ, Koo JS, Eissa NT. Regulation of inducible nitric oxide synthase by rapid cellular 42. 396 turnover and cotranslational down-regulation by dimerization inhibitors. Proc Natl Acad Sci U S A. 397 2004;101(52):18141-6. 398 43. Setty BA, Jin Y, Houghton PJ, Yeager ND, Gross TG, Nelin LD. Hypoxic Proliferation of 399 Osteosarcoma Cells Depends on Arginase II. Cell Physiol Biochem. 2016;39(2):802-13. 400 44. Schimke RT. The Importance of Both Synthesis and Degradation in the Control of Arginase Levels 401 in Rat Liver. J Biol Chem. 1964;239:3808-17. 402 Zimmer J, Weitnauer M, Boutin S, Kublbeck G, Thiele S, Walker P, et al. Nuclear Localization of 45. 403 Suppressor of Cytokine Signaling-1 Regulates Local Immunity in the Lung. Front Immunol. 2016;7:514. 404 Eubank TD, Roda JM, Liu H, O'Neil T, Marsh CB. Opposing roles for HIF-1alpha and HIF-2alpha in 46. 405 the regulation of angiogenesis by mononuclear phagocytes. Blood. 2011;117(1):323-32. 406 Yu Y, Cui Y, Zhao Y, Liu S, Song G, Jiao P, et al. The binding capability of plasma phospholipid 47. 407 transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation. Sci Rep. 408 2016;6:20845. 409 48. Crouse JA, Mitchell WM. Interferon-gamma receptor: mRNA half-life, receptor mass, and 410 abundance on A431 human epidermoid carcinoma cells. J Interferon Res. 1992;12(1):23-5. 411 49. Azimifar SB, Nagaraj N, Cox J, Mann M. Cell-type-resolved quantitative proteomics of murine 412 liver. Cell Metab. 2014;20(6):1076-87. 413 Precious BL, Carlos TS, Goodbourn S, Randall RE. Catalytic turnover of STAT1 allows PIV5 to 50. 414 dismantle the interferon-induced anti-viral state of cells. Virology. 2007;368(1):114-21. 415 51. Brenes A, Afzal V, Kent R, Lamond AI. The Encyclopedia of Proteome Dynamics: a big data 416 ecosystem for (prote)omics. Nucleic Acids Res. 2018;46(D1):D1202-D9. 417 Mukherjee S, Chen LY, Papadimos TJ, Huang S, Zuraw BL, Pan ZK. Lipopolysaccharide-driven Th2 52. 418 cytokine production in macrophages is regulated by both MyD88 and TRAM. J Biol Chem. 419 2009;284(43):29391-8. 420 53. Yang HL, Zhou WJ, Chang KK, Mei J, Huang LQ, Wang MY, et al. The crosstalk between 421 endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by 422 secreting IL-10 and TGF-beta. Reproduction. 2017;154(6):815-25. 423 54. Bissels U, Wild S, Tomiuk S, Holste A, Hafner M, Tuschl T, et al. Absolute quantification of 424 microRNAs by using a universal reference. RNA. 2009;15(12):2375-84. 425 55. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of 426 mammalian gene expression control. Nature. 2011;473(7347):337-42. 427 56. Tuckerman JR, Zhao Y, Hewitson KS, Tian YM, Pugh CW, Ratcliffe PJ, et al. Determination and 428 comparison of specific activity of the HIF-prolyl hydroxylases. FEBS Lett. 2004;576(1-2):145-50. 429 57. Simicevic J, Schmid AW, Gilardoni PA, Zoller B, Raghav SK, Krier I, et al. Absolute quantification 430 of transcription factors during cellular differentiation using multiplexed targeted proteomics. Nat 431 Methods. 2013;10(6):570-6.

- 432 58. Xaus J, Comalada M, Valledor AF, Lloberas J, Lopez-Soriano F, Argiles JM, et al. LPS induces
- 433 apoptosis in macrophages mostly through the autocrine production of TNF-alpha. Blood.
- 434 2000;95(12):3823-31.
- 435 59. Barbera-Cremades M, Gomez AI, Baroja-Mazo A, Martinez-Alarcon L, Martinez CM, de Torre436 Minguela C, et al. P2X7 Receptor Induces Tumor Necrosis Factor-alpha Converting Enzyme Activation
 437 and Release to Boost TNF-alpha Production. Front Immunol. 2017;8:862.
- 438 60. Cudejko C, Wouters K, Fuentes L, Hannou SA, Paquet C, Bantubungi K, et al. p16INK4a deficiency
- promotes IL-4-induced polarization and inhibits proinflammatory signaling in macrophages. Blood.2011;118(9):2556-66.
- 441 61. Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, et al. From single-cell to cell-
- 442 pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 2014;24(3):496-510.
- Su Z, Yang R, Zhang W, Xu L, Zhong Y, Yin Y, et al. The synergistic interaction between the
 calcineurin B subunit and IFN-gamma enhances macrophage antitumor activity. Cell Death Dis.
 2015;6:e1740.
- 447 63. Michelucci A, Cordes T, Ghelfi J, Pailot A, Reiling N, Goldmann O, et al. Immune-responsive gene
- 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A.
 2013;110(19):7820-5.
- 450 64. Krombach F, Munzing S, Allmeling AM, Gerlach JT, Behr J, Dorger M. Cell size of alveolar
- 451 macrophages: an interspecies comparison. Environ Health Perspect. 1997;105 Suppl 5:1261-3.
- 452 65. Swanson JA, Lee M, Knapp PE. Cellular dimensions affecting the nucleocytoplasmic volume ratio.
- 453 J Cell Biol. 1991;115(4):941-8.
- 454 66. Marino S, Hogue IB, Ray CJ, Kirschner DE. A methodology for performing global uncertainty and 455 sensitivity analysis in systems biology. J Theor Biol. 2008;254(1):178-96.