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Supporting File 1: Materials and methods  

 

 

QuantiBRITE phycoerythrin beads based assay for TNFR quantification 

HeLa cells were cultured in DMEM supplemented with 10% FBS and Penicillin/Streptomycin. 

The cells were detached with TrypLE express (Thermo Fisher Scientific) and incubated in a 50ml tube 

(Sarstedt) for 30 min at 37 °C and 5 % CO2. The PE-labelled monoclonal anti-CD120a and anti-

CD120b antibody (Biolegend; Lot: B230531 and B226634, respectively) was diluted 1:10 in PBS with 

2% FBS. The cells were counted, 100,000 cells were resuspended in the CD120a or CD120b staining 

solution and incubated for 20 min on ice in the dark. Afterwards, the cells were washed with PBS + 

2% FBS and resuspended in 200 μl PBS + 2% FBS. To quantify the amount of bound antibodies per 

cell the QuantiBRITE PE Quantitation Beads (BD Biosciences, UK) were used according to 

manufacturer’s instructions. A BD LSR II (BD Biosciences) was used for data acquisition and analysis 

was done using the FACS Diva software (Version 5, BD Biosciences). 

Mass spectrometry based quantification of death receptor amount 

Mass spectrometry (MS) derived Intensity-Based Absolute Quantification score (iBAQ) values 

of protein content hold a strong power law correlation with the absolute protein amount over at 

least four orders of magnitude [1]. Taking into account that protein expression of death receptors, 

TNFR1 and DR4/5, is correlated with the receptor abundance on the cell surface [2], we can derive 

the absolute quantities for DR4/5 by comparing their iBAQ scores with the iBAQ score of TNFR1 [3] 

and its absolute amount on the cellular membrane that we measured. The correlation between 

protein content and iBAQ protein scores is most accurately described by a log-log regression model: 

 

log10(𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑋) = 𝛼 + 𝛽 ∗ log10(𝑖𝐵𝐴𝑄 𝑜𝑓 𝑋) 

However, in the absence of reference proteins, we were unable to estimate the α and β parameters 

therefore we have assumed the direct proportionality of protein absolute abundance to the iBAQ 

score as one of the common practices in MS data analysis [4]. Therefore, 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑋

𝑖𝐵𝐴𝑄 𝑜𝑓 𝑋
=
𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑌

𝑖𝐵𝐴𝑄 𝑜𝑓 𝑌
                                                                 (1) 

 

where Y is the reference protein and X is the protein of interest. Thus, the formula for quantification 

of surface expression of DR4/5 receptors by comparing their iBAQ scores with the iBAQ score and 

abundance of TNFR1 is  

                                                                   [𝐷𝑅] =
[𝑇𝑁𝐹𝑅1]∗𝑖𝐵𝐴𝑄(𝐷𝑅)

𝑖𝐵𝐴𝑄(𝑇𝑁𝐹𝑅1)
                                                                 (2) 
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The final receptor quantities are summarised in Table A. 

Table A: DR4/5 comparative quantification   

iBAQ of TNFR1 
  

TNFR1 absolute 
surface  
amount, # 

iBAQ of DR5 
 

iBAQ of DR4 
 

DR5 absolute 
surface 
amount, # 

DR4 absolute 
surface 
amount, # 

4.991199 905 5.109362 4.238999 926.4252 768.6117 

 

Estimation of death ligand content 

Considering the molecular weight of the death ligand, the volume of the treatment medium 

we estimated the number of ligand trimers available per single cell (Table B). The volume of HeLa 

cell were considered to be fixed and equal to 2.6 pL [5]. 

Table B: Conversion of death receptor ligand concentration into ligand amount in the proximity 

volume of a single HeLa cell   

Death ligand 
 

Concentration, 
ng/mL 

Concentration, 
nM 

Ligands per each 
HeLa cell, # 

Ligand trimers 
per cell, # 

rhTRAIL 5 0.238 373 124 

rhTRAIL 7.5 0.357 559 186 

rhTRAIL 50 2.381 3728 1243 

rhTRAIL 250 11.905 18640 6213 

rhTNFα 25 1.471 2303 768 

rhTNFα 10 0.588 921 307 

 

Thus, for example, we are translating the concentration of 10 ng/mL of monomeric (under 

denaturation conditions) recombinant TNFα with molecular weight of 17kDa into 307 molecules of 

its trimer available per single HeLa cell. This amount is enough to saturate all trimer TNFR1 

complexes that are permanently present at the cellular membrane in the maximum amount of 301 

receptor trimers per cell estimated by our experiment. Moreover, this concentration in the 

treatment medium allows the maintenance of efficient stimulation of all receptors for many more 

receptor internalisation cycles [6,7]. 

Estimation of ligand associated death receptor content  

Death receptors binding to the dedicated death ligands is at least 3-fold higher [8] than the 

downstream Casp8 dimerization process [9] and, consequently, Casp8 activation dynamics [10]. This 

empowers the use of the rapid equilibrium approximation (REA) for the estimation of the ligand-

receptor complexes. From REA we derived the relationship between the ligand bound receptors 

amount [RL] and total number of receptors per cell [Rtotal] (Table A) together with ligand 

concentration [L] (Table B). 

𝑑[𝑅𝐿]

𝑑𝑡
= 𝑘𝑜𝑛[𝑅][𝐿] − 𝑘𝑜𝑓𝑓[𝑅𝐿], 𝑤ℎ𝑒𝑟𝑒    [𝑅] = [𝑅𝑡𝑜𝑡𝑎𝑙] − [𝑅𝐿]  

The stationary equilibrium is:   
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𝑑[𝑅𝐿]

𝑑𝑡
= 0,         𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒         [𝑅𝐿] =

[𝑅𝑡𝑜𝑡𝑎𝑙]

(
𝐾𝑑
[𝐿]
+ 1)

  

where Kd is ligand dissociation constant derived from the literature (Table C). 

Table C: Ligand to death receptor dissociation constant  

Dissociation Kd value, nM Reference 

rhTRAIL to DR4 8.09 [11] 

rhTRAIL to DR5 0.27 [12] 

rhTNFα to TNFR1 0.02 [8] 

 

Estimation of ligand associated receptor clustering 

The minimal unit of the active receptor-ligand complex is the trimer. Death receptor trimers 

form higher order structures by clustering together. Both these processes, trimerization and further 

clustering,  are triggered by ligand association [13–15] (S1 Fig). The experimentally measured 

frequency distribution of the TNFR1 cluster size on the cellular membrane of unstimulated (black 

line in S1 Fig) and TNFα stimulated HeLa cells derived by Super-resolution PALM microscopy [13] 

allowed us to calibrate single cell cluster’s content. The experimental distribution (pink solid line) 

was smoothed by splines transformation (red solid line in S1 Fig), segregated by the trimer receptor 

unit per cluster (red dashed lines in S1 Fig) and quantified (table within S1 Fig).    

Measurement and estimation of endogenous protein concentrations  

We determined intracellular protein concentrations of FADD, RIP1 in HeLa by (QWB). HeLa 

cells were harvested and lysed. Western blots were performed using ranges of 10-100 µg of whole 

cellular protein and 10-2000 fmol of purified recombinant FADD, RIP1. 

RIPK1 antibody was purchased from Cell Signaling Technology (Danvers, MA, USA). Caspase 8 
antibody was from Alexis Biochemicals (San Diego, CA, USA) and FADD antibody was obtained from 
BD Transduction Laboratories (Franklin Lakes, NJ, USA). Fluorescent-labelled secondary antibodies 
were purchased from LI-COR Biosciences (UK). 

The fluorescence signals from each western blot were scanned using a Licor Odyssey Infrared 
Imaging System.  The digital densitometry analysis was carried out by quantifying the fluorescent 
signal intensities of each protein band using the Licor Biosciences software version 3.0.30. 

Relating the signal intensities of recombinant proteins to the signal intensities from HeLa lysate, we 

calculated the amount of the respective protein per HeLa total protein content. Assuming the total 

protein mass in HeLa cell of 156 pg [16] and the average HeLa volume of 2.6 pL [5], the resulting 

total protein concentration of 60 µg/µL were used to rescaling the amount of the respective protein 

per HeLa total protein content to the protein amount per volume of HeLa. Thus, we retrieve the 

intracellular protein concentration for HeLa cells that we finally converted into number of molecules 

per single cell (Table D). 

Table D: Protein numbers and concentrations 
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Protein  # molecules per cell in model  Concentration, nM  Reference/Remark 

ProCasp8  54801 35.0 [17] 

FADD 236574 151.1 experiment 

RIP1 1942026 1240.3 experiment 

RIP3 100  undetectable, experiment  

ProCasp3 187888 120 [18] 

ProCasp6 1204 0.77 adjusted  

XIAP 98641 63 [18] 

 

ProCasp6 concentration was manually adjusted in simulations of the complete deterministic system 

which comprised of the averaged stochastic dynamics of Casp8 activation on the RIPoptosome 

combined with the deterministic ODE system that reproduces Casp8-Casp3-Casp6 feedback (Fig 2C). 

The contribution of the FLIP(S) as an inhibition of ProCasp8 dimerization was neglected due to its 

low concentration compared to ProCasp8 in HeLa cells (Table D). Estimated endogenous level of 

FLIP(L) in HeLa cells is low [19] therefore its contribution as a dimerization co-partner of ProCasp8 

was neglected too in the current modelling setup. RIP3 protein was under the detection limit for the 

tested dilution range of HeLa lysate in our QWB experiments. A previous study suggests that RIP3 is 

not expressed endogenously in HeLa cells [20], therefore, we use the arbitrary amount of 100 

molecules of RIP3 protein per HeLa cell as the estimate for the low RIP3 content.  

Determination of kinetic parameter values 

Most of the kinetic parameters in the current modelling set up were taken from the 

literature (Table E) except the value for Casp8 catalytic efficiency to FRET probe (keff) and the rate of 

Casp3 ubiquitin dependent degradation by XIAP (kcat) that, in addition to the ProCasp6 

concentration, was adjusted by complete deterministic system (Fig 2C). 

Table E: Parameters values 

Parameter Symbol Value Unit 
Stochastic 
rate Unit Reference/Remark 

DEDs-DEDs dissociation 
constant Kd 0.175 uM   [21] 

DEDs-DEDs dissociation 
rate 

aoff, boff, 
coff 0.0609 1/min 0.0609 1/min  

DEDs-DEDs association 
rate aon, bon, con 0.348 1/(uM*min) 2.22261E-07 1/((#/cell)*min) [22] 

DD-DD domain 
dissociation rate doff 0.4651 1/min 0.4651 1/min [23] 

DD-DD dissociation 
constant Kd_dd 0.323 uM   [23] 

DD-DD domain association 
rate don 1.439938 1/(uM*min) 9.1966E-07 1/((#/cell)*min)  

RHIM-RHIM domain 
dissociation rate eoff 0.6 1/min 0.6 1/min [24] 

RHIM-RHIM domain 
association rate eon 180 1/(uM*min) 0.000114962 1/((#/cell)*min) [24] 

Casp8 dimer dissociation 
rate kdoff 0.0257 1/min 0.0257 1/min [9] 

Casp8 dimer dissociation 
constant Kd1 3.3 uM   [9] 

Casp8 dimerization rate kdon 0.007788 1/(uM*min) 4.97404E-09 1/((#/cell)*min) [9,25] 

Casp8 catalytic efficiency 
to ProCasp3 keffc8c3 52.2 1/(uM*min) 3.33391E-05 1/((#/cell)*min) [26] 
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Casp3 catalytic efficiency 
to ProCasp6 keffc3c6 12 1/(uM*min) 7.66416E-06 1/((#/cell)*min) [27] 

Casp6 catalytic efficiency 
to ProCasp8 keffc6c8 0.0402 1/(uM*min) 2.56749E-08 1/((#/cell)*min) [28] 

Casp3 catalytic efficiency 
to ProCasp3 keffc3c3 2.4 1/(uM*min) 1.53283E-06 1/((#/cell)*min) [29] 

Casp8 catalytic efficiency 
to FRET probe keff 162 1/(uM*min) 0.000103466 1/((#/cell)*min) Adjusted by model 

XIAP binding to Casp3 kxiapon 156 1/(uM*min) 9.96341E-05 1/((#/cell)*min) [18] 

XIAP dissociation from 
Casp3 kxiapoff 0.144 1/min 0.144 1/min [18] 

Casp3 ubiquitin 
dependent degradation by 
XIAP 

kcat 

1.75 
 
 

0.04 1/min 

1.75 
 
 

0.04 1/min 

Adjusted by model 
  

[30] 
 Initial value 

 

Stochastic DISC/RIPoptosome model 

 Dynamic assembly of individual RIPoptosome was been simulated stochastically by direct 

Gillespie stochastic simulation algorithm (SSA) [31,32]. The SSA deals with the discrete reaction 

species that are the anterior and posterior tails of the individual RIPoptosomes within a single cell. 

Each tail has a probability either to associate with the compatible protein or to lose the existent 

proximal protein association. The formation of each RIPoptosome as the linear filament of n 

consequently joined RIPoptosomal proteins summarized by the following reactions: 

[filament(𝑛)_DED domain] + FADD  
     𝑎𝑜𝑛/𝑎𝑜𝑓𝑓       
↔            [filament(𝑛 + 1)_DD domain] , 

 
[filament(𝑛)_DED domain] + ProCasp8  

     𝑏𝑜𝑛/𝑏𝑜𝑓𝑓       
↔            [filament(𝑛 + 1)_DED2 domain] , 

 
[filament(𝑛)_DED domain] + FLIP(S/L)   

     𝑏𝑜𝑛/𝑏𝑜𝑓𝑓       
↔            [filament(𝑛 + 1)_DED2 domain] , 

 
[filament(𝑛)_DED domain] + Casp8 DEDs  

     𝑏𝑜𝑛/𝑏𝑜𝑓𝑓       
↔            [filament(𝑛 + 1)_DED2 domain] , 

 
[filament(𝑛)_DED2 domain] + ProCasp8  

     𝑐𝑜𝑛/𝑐𝑜𝑓𝑓       
↔           [filament(𝑛 + 1)_DED2 domain] , 

 
[filament(𝑛)_DED2 domain] + FLIP(S/L)   

     𝑐𝑜𝑛/𝑐𝑜𝑓𝑓       
↔           [filament(𝑛 + 1)_DED2 domain] , 

 
[filament(𝑛)_DED2 domain] + Casp8 DEDs  

     𝑐𝑜𝑛/𝑐𝑜𝑓𝑓       
↔           [filament(𝑛 + 1)_DED2 domain] , 

 
[filament(𝑛)_DD domain] + FADD  

     𝑑𝑜𝑛/𝑑𝑜𝑓𝑓       
↔            [filament(𝑛 + 1)_DED domain] , 

 
[filament(𝑛)_DD domain] + RIP1  

     𝑑𝑜𝑛/𝑑𝑜𝑓𝑓       
↔            [filament(𝑛 + 1)_RHIM domain] , 

 
[filament(𝑛)_RHIM domain] + RIP1  

     𝑒𝑜𝑛/𝑒𝑜𝑓𝑓       
↔           [filament(𝑛 + 1)_DD domain] , 

 
[filament(𝑛)_RHIM domain] + RIP3  

     𝑒𝑜𝑛/𝑒𝑜𝑓𝑓       
↔           [filament(𝑛 + 1)_RHIM domain] . 

 

The propensity of each reaction at the each iteration step was calculated from the dedicated 

association/dissociation rate constant shown in Table E and the current amount of compatible 
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reaction species. The sequential association of two molecules of ProCasp8 with one of the filaments 

tails is taken to coincide with ProCasp8 self-cleavage.  This results in the formation of two Casp8 

DEDs that remain associated with the filament and creation of a single active dimeric Casp8 (Casp8*) 

which dissociates from the filament. The same Casp8 activation is considered in the case of receptor 

clustering scenario when simultaneous binding of two molecules of ProCasp8 take place within one 

cluster. Anterior and posterior sides of the filaments within the cluster are considered 

independently. 

Complete deterministic model 

To identify the values for free parameters, Casp8 catalytic efficiency to FRET probe (keff), the 

rate of Casp3 ubiquitin dependent degradation (kcat) and ProCasp6 concentration, we formalized 

the deterministic model of the whole pre-MOMP apoptotic network. The reactions incorporated in 

the model are following: 

ProCasp8 + ProCasp8  
          𝑘𝑎𝑐𝑡           
→           Casp8∗ ,  

 
Cs8∗ + Cs8∗   

     𝑘𝑑𝑜𝑛/𝑘𝑑𝑜𝑓𝑓       
↔              Casp8∗ ,  

 
Casp8∗ + ProCasp3  

          𝑘𝑒𝑓𝑓𝑐8𝑐3           
→               Casp8∗ + Casp3∗ ,  

 
Casp8∗ + FRETprobe  

          𝑘𝑒𝑓𝑓           
→           Casp8∗ + FRETcleaved ,  

 
2Casp3∗ + ProCasp3  

          𝑘𝑒𝑓𝑓𝑐3𝑐3           
→               2Casp3∗ + Casp3∗ ,  

 
2Casp3∗ + ProCasp6  

          𝑘𝑒𝑓𝑓𝑐3𝑐6           
→               2Casp3∗ + Casp6∗ ,  

 
2Casp6∗ + ProCasp8  

          𝑘𝑒𝑓𝑓𝑐6𝑐8          
→               2Casp6∗ + Cs8∗ ,  

 
Casp3∗ + XIAP  

     𝑘𝑥𝑖𝑎𝑝𝑜𝑛/𝑘𝑥𝑖𝑎𝑝𝑜𝑓𝑓       
↔                   Casp3∗: XIAP ,  

 
Casp3∗: XIAP   

          𝑘𝑐𝑎𝑡           
→           Casp3∗ub .  

 
Taking into account the law of total mass conservation of each protein, the model reactions 

translated into a system of ordinary differential equations (ODE), describing the time evolution of 

seven core variables (Table F) constituting the network (Fig 2C).  

Table F: ODE variables 

Variable Symbol 

Dimer of active Caspase 8 (Casp8*) 𝑦(1) 

Monomer of active Caspase 3 (Casp3*) 𝑦(2) 

Monomer of active Caspase 6 (Casp6*) 𝑦(3) 

Monomer of active Caspase 8 (Cs8*) 𝑦(4) 

Monomeric active Caspase 3 in the complex with XIAP (Casp3*:XIAP) 𝑦(5) 

Ubiquitinated monomeric Caspase 3 (Casp3*ub) 𝑦(6) 

Cleaved FRET probe (FRETcleaved) 𝑦(7) 
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We have implemented the deterministic rate constant for the RIPoptosome based Casp8 activation 

dynamics (kact). For that we manually adjusted kact to reproduce the population average dynamics 

of stochastic RIPoptosome based Casp8 activation alone over the population of 100 cells averaging 

the time traces for the response to 5, 7.5, 50, 250 ng/mL of the death ligand. Thus, the final ODE 

system is expressed as following: 

𝑑𝑦(1)

𝑑𝑡
= 𝑘𝑎𝑐𝑡 (𝑃𝑟𝑜𝐶𝑎𝑠8 − 2𝑦(1) − 𝑦(4))

2
+ 𝑘𝑑𝑜𝑛 𝑦(4)2 − 𝑘𝑑𝑜𝑓𝑓 𝑦(1) 

 

𝑑𝑦(2)

𝑑𝑡
= (𝑘𝑒𝑓𝑓𝑐8𝑐3 𝑦(1) + 𝑘𝑒𝑓𝑓𝑐3𝑐3 𝑦(2)2)(𝑃𝑟𝑜𝐶𝑎𝑠3 − 𝑦(2) − 𝑦(5) − 𝑦(6))

− 𝑘𝑥𝑖𝑎𝑝𝑜𝑛 𝑦(2) (𝑋𝐼𝐴𝑃 − 𝑦(5)) + 𝑘𝑥𝑖𝑎𝑝𝑜𝑓𝑓 𝑦(5) 
 

𝑑𝑦(3)

𝑑𝑡
= 𝑘𝑒𝑓𝑓𝑐3𝑐6 𝑦(2)2 (𝑃𝑟𝑜𝐶𝑎𝑠6 − 𝑦(3)) 

 

𝑑𝑦(4)

𝑑𝑡
= 𝑘𝑒𝑓𝑓𝑐6𝑐8 𝑦(3)2(𝑃𝑟𝑜𝐶𝑎𝑠8 − 2𝑦(1) − 𝑦(4)) + 2 𝑘𝑑𝑜𝑓𝑓 𝑦(1) −  2 𝑘𝑑𝑜𝑛 𝑦(4)2 

 

𝑑𝑦(5)

𝑑𝑡
= 𝑘𝑥𝑖𝑎𝑝𝑜𝑛 𝑦(2)(𝑋𝐼𝐴𝑃 − 𝑦(5)) − (𝑘𝑥𝑖𝑎𝑝𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡) 𝑦(5) 

 

𝑑𝑦(6)

𝑑𝑡
= 𝑘𝑐𝑎𝑡 𝑦(5) 

 

 

𝑑𝑦(7)

𝑑𝑡
= 𝑘𝑒𝑓𝑓 𝑦(1)(1 − 𝑦(7)) 

 

With this model we manually adjusted keff, kcat and ProCasp6 parameters. The satisfying parameter 

set reproduces the average dependence of the experimentally observed HeLa cell death delays. We 

have considered the mean of the cell death delay distributions quantified in the experiments [33] for 

of FRET probe cleavage associated with the MOMP. The final parameter values are shown in the 

table (Table E). 

Semi-stochastic hybrid model implementation 

To merge the dynamics of the discrete process of Casp8 production on the RIPoptosome and 

continuous system of downstream effector Caspases feedback loop we combined the Monte Carlo 

algorithm of discrete simulation with the continuous time-step integration of ODE system. 

Considering a very low population number of RIPoptosomes origins per cell compared to other 

reactive species in the network, the system can be partitioned based on species population number 

[34,35].  Thus we partition the system into fixed set of slow reactions that are the origin based 

assembly of RIPoptosome and fixed set of the fast reactions that are the downstream caspases 

cascade. According to the earlier develop algorithm for stochastic-deterministic coupling [35,36] we 

simulate a slow reaction group by direct Gillespie SSA [31,32] and subset of the fast reactions with 

ODE integration approach. We adapted earlier published algorithm of direct stochastic-deterministic 

variables coupling [37] and implemented our iteration pipeline of trade-off between direct SSA and 

ODE integration in the MATLAB 2017b environment. To verify the accuracy of the hybrid method in 
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our case we compared it with the fully stochastic method. Figure S5 demonstrates that two 

approaches are quantitatively and qualitatively in agreement. 

The pipeline 

Set time t = 0 and set discrete and continuous variables initial conditions y(0) = initial values. 
Calculate the propensity for each discrete reaction from the set of discrete reactions. 

 
While t is less than the simulation duration 
1) From the propensities of the discrete reactions, select a time step size τ and the reaction to 

happen over τ period according to Gillespie SSA. 
2) Update initial conditions y(t) for the deterministic system according to output of step 1. 
3) Integrate ODE1 system of continuous reactions over the time interval [t, t + τ] and get y(t + τ). 
4) Update the propensities of the discrete reactions according to the y(t + τ) from step 3.   
5) Set t to the t + τ 

End   

 
ODE1 system 
 

We present below the system of deterministic ODEs adapted for our hybrid model 
simulations where amount of active dimers of Casp8, y(1), and the amount of ProCasp8 molecules 
recruited to RIPoptosome, ProCasp8bound, are the bridging species between the stochastic and 
deterministic routine: 
 

𝑑𝑦(1)

𝑑𝑡
= 𝑘𝑑𝑜𝑛 𝑦(4)2 − 𝑘𝑑𝑜𝑓𝑓 𝑦(1) 

 

𝑑𝑦(2)

𝑑𝑡
= (𝑘𝑒𝑓𝑓𝑐8𝑐3 𝑦(1) + 𝑘𝑒𝑓𝑓𝑐3𝑐3 𝑦(2)2)(𝑃𝑟𝑜𝐶𝑎𝑠3 − 𝑦(2) − 𝑦(5) − 𝑦(6))

− 𝑘𝑥𝑖𝑎𝑝𝑜𝑛 𝑦(2) (𝑋𝐼𝐴𝑃 − 𝑦(5)) + 𝑘𝑥𝑖𝑎𝑝𝑜𝑓𝑓 𝑦(5) 
 

𝑑𝑦(3)

𝑑𝑡
= 𝑘𝑒𝑓𝑓𝑐3𝑐6 𝑦(2)2 (𝑃𝑟𝑜𝐶𝑎𝑠6 − 𝑦(3)) 

 

𝑑𝑦(4)

𝑑𝑡
= 𝑘𝑒𝑓𝑓𝑐6𝑐8 𝑦(3)2(𝑃𝑟𝑜𝐶𝑎𝑠8 − 2𝑦(1) − 𝑦(4) − 𝑃𝑟𝑜𝐶𝑎𝑠8𝑏𝑜𝑢𝑛𝑑) + 2 𝑘𝑑𝑜𝑓𝑓 𝑦(1)

−  2 𝑘𝑑𝑜𝑛 𝑦(4)2 
 

𝑑𝑦(5)

𝑑𝑡
= 𝑘𝑥𝑖𝑎𝑝𝑜𝑛 𝑦(2)(𝑋𝐼𝐴𝑃 − 𝑦(5)) − (𝑘𝑥𝑖𝑎𝑝𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡) 𝑦(5) 

 

𝑑𝑦(6)

𝑑𝑡
= 𝑘𝑐𝑎𝑡 𝑦(5) 

 

 

𝑑𝑦(7)

𝑑𝑡
= 𝑘𝑒𝑓𝑓 𝑦(1)(1 − 𝑦(7)) 

 

Coefficient of variation 

The coefficient of variation (CV) was used as the relative measure of noise strength: 

𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝑅𝐸𝑇 𝑠𝑖𝑔𝑛𝑎𝑙

𝑀𝑒𝑎𝑛 𝑜𝑓 𝐹𝑅𝐸𝑇 𝑠𝑖𝑔𝑛𝑎𝑙
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For single cell dynamic ramp noise the CV was calculated through the time evolution from the 

moment of dose introduction till the last 30 min before the cell death threshold.  

Bimodality test 

In order to verify that the low dose DL with DR clustering scenario exhibited bimodality (Fig 6A), we 

performed a statistical test outlined in [38] and implemented in the R package ‘multimode'. This 

method utilises an excess mass statistic with bootstrap calibration. We found that in this case the 

true number of modes is greater than 1 with p-value < 2.2e-16 but is greater than 2 with p-value = 

0.8. Therefore the number of modes in this case is exactly 2. Though, for the low dose DL with the 

disrupted clustering scenario (Fig 6C) we found the true number of modes to be greater than 1 with 

p-value = 0.87, therefore in this case the distribution is unimodal. 
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