
We provide here detailed information regarding the implementation of the procedures described in the
main text. For the most current information about implementation issues and function arguments, please
consult the help pages in the Bioconductor R package clusterExperiment. The accompanying vi-
gnette provides extended examples.

1 Infrastructure of the clusterExperiment Package

The clusterExperiment package supplies a new Bioconductor class, ClusterExperiment, for
easy storage and manipulation of multiple clustering results, as well as functions for visualization of these
clusterings along with the original data. The class inherits from the existing SingleCellExperiment
class, a baseline class for storing single-cell and other RNA-Seq datasets in Bioconductor [1]. The
ClusterExperiment class additionally stores how the data should be transformed and whether the in-
put data are counts, so as to appropriately handle data from single-cell RNA-Seq and other transcriptomics
experiments. The class provides a formal mechanism for storing clustering results, even when some ob-
servations are left unclustered in some of the clusterings, making comparison across clusterings based on
different filtering of samples easy.

The clusterExperiment package also provides a class, ClusterFunction, for storing cluster-
ing functions, so that user-defined functions can be easily integrated into the RSEC workflow.

2 clusterMany

In what follows, we will use the term argument to refer to the user-given arguments to the function clusterMany
and parameter to refer to the values that clusterMany will actually pass internally to a clustering rou-
tine. A parameter can also be a logical value to include whether or not to perform a certain action (e.g.
subsampling).

The function clusterMany divides possible parameters into those that can be compared – i.e., those
parameters for which clusterMany may vary in different runs of clustering algorithms – and those that
are fixed to be the same for all of the clusterings runs. We call one set of parameters that will be given to
a particular run of a clustering algorithm a parameter combination. clusterMany will run a clustering
algorithm for every parameter combination, resulting in a different clustering result.

The following arguments to the function clusterMany allow the user to define the values for the
parameters that are allowed to vary within clusterMany. Specifically, all of these arguments allow for
multiple input values. All combinations across all the values given to these arguments are created, restricted
only by limiting to those parameter values that are feasible in conjunction. Each of these combinations
will create a parameter combination. Thus, for any the following arguments, a set of values can be given
(hence our use of “and/or” in describing the possible values), and all of those values will be used in com-
bination with all of the values of the other arguments. However, only a single value from any argument
to clusterMany is used in any particular parameter combination (i.e. multiple values given to an argu-
ment of clusterMany can not be used as a parameter within a single clustering routine). Furthermore, in
any particular parameter combination, the individual values of the arguments listed here can potentially be
interpreted differently depending on the value of other arguments used for that parameter combination.

Recall in what follows that clusterExperiment does not assume that all samples will be assigned
to a cluster, depending on the clustering algorithm, and has a special encoding of “-1” for such lack of
assignment.

• ‘sequential’: This argument takes on logical values (i.e. TRUE and/or FALSE), indicating whether
the sequential strategy should be implemented or not (see Section 2.3).
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• ‘subsample’: This argument takes on logical values (i.e. TRUE and/or FALSE), indicating whether
the subsampling strategy for determining a dissimilarity matrix D should be implemented or not.

• ‘clusterFunction’: The clustering functions to be tried in the main clustering step. For parameter com-
binations that include ‘subsample=TRUE’, then the value pulled from the ‘clusterFunction’ argument
defines the clustering method that will be used on the matrix D created from subsampling the data.
For combinations of arguments where ‘subsample=FALSE’, the value pulled from the ‘clusterFunc-
tion’ argument is the clustering method that will be used directly on the original data. Currently the
following built-in clustering functions are implemented:

– k-means, implemented with the function kmeans from the package stats;

– PAM, implemented with the function pam from the package cluster;

– Clara, implemented with the function clara from the package cluster;

– Spectral clustering, implemented with the function speccin from the package kernlab;

– Hierarchical clustering with K clusters, implemented with the function hclust followed by
the function cuttree in the package stats;

– Hierarchical clustering with clusters determined by a similarity parameter α, implemented with
the function hclust followed by our procedure, documented below (“hierarchical01”);

– Tight clustering, implemented with our code adapted from the package tight (see documen-
tation below).

• ‘ks’: For any particular parameter combination, the value pulled from the ‘ks’ argument is interpreted
differently depending on the choices of the other arguments included in the parameter combination. If
‘sequential=TRUE’, ‘ks’ defines the parameter ‘k0’ of sequential clustering, which is approximately
like the initial starting point for the number of clusters in the sequential process. Otherwise, ‘ks’ is
passed to set the parameter ‘k’ of the main clustering step (and by default that of the subsampling
step), and is only relevant if the clustering algorithm used from the ‘clusterFunction’ argument in the
parameter combination is of a type that requires the user to define a value K.

• ‘reduceMethod’: This argument determines the dimensionality reduction procedure(s) to be used, in
which case the clustering will be done on a reduced dataset, rather than the full dataset.
clusterExperiment provides some built-in methods for dimensionality reduction: “PCA”, “var”,
“abscv”, “mad”, “mean”, “iqr”, “median” and/or “none”. However, the user can also provide their
own set of dimensionality reductions, described more fully in Section 2.1 below. “var”,“abscv”,
“mad”,“mean”,“iqr”, “median” refer to filtering the data to a subset of existing genes, and indicate the
method of selecting that subset of genes. The options are to chose the genes with the largest variance,
absolute coefficient of variation (CV), median absolute deviation (MAD), mean, inter-quartile range
(IQR) and/or coefficient of variation (CV), respectively. “PCA” refers to clustering on the top principal
components of the genes.

• ‘nFilterDims’ and ‘nReducedDims‘: Based on the values given to “reduceMethod”, the user can set
the number of dimensions to use via the arguments “nFilterDims” and “nReducedDims”. “nFilter-
Dims” determines the number of genes to select methods that reduce to a subset of the existing genes,
while “nReducedDims” determines the number of the new features to select for methods that use new
features created from the original genes. Like the other arguments, these arguments can be given a
range of values, meaning all combinations of these values will be tried. However, in creating param-
eter combinations, the different types of dimensionality reduction are never mixed (e.g., “PCA” and
“mad” are never in the same parameter combination), and therefore the values of “nFilterDims” and
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“nReducedDims” are also never mixed together despite being separate arguments to combineMany–
each parameter combination that will be passed to the clustering algorithm either has a value from
from “nFilterDims” OR from “nReducedDims”.

• ‘distFunction’: This argument determines the distance function to be used in clustering (default being
Euclidean), only applicable when ‘reduceMethod’ does not imply a dimensionality reduction that is
not a new set of features, like “PCA” (see Section 2.1 – it is assumed that for such newly defined
features, the Euclidean distance is the correct distances)

• ‘minSizes’: The minimum size required for a cluster – samples in clusters smaller than this size are
reclassified as “unassigned” (-1).

• ‘alphas’: The values for α ∈ (0, 1) parameters for clustering techniques that determine clusters based
on the required amount of similarity rather than the number of clusters K. Larger values of α are
less stringent on the amount of similarity required in a cluster (like significance levels α in hypothesis
testing).

• ‘betas’: This argument is used when “sequential=TRUE” and the values of this argument are passed
to the β parameter used by sequential clustering (see below, Section 2.3) to determine the level of
stability required between to determine that a stable cluster has been found. Larger values of β require
greater stability between clusters.

• ‘findBestK’: This argument takes on logical values and is only applicable for parameter combinations
where the clustering algorithms has a parameter “k” that defines the number of clustersK. In parame-
ter combinations where “findBestK=TRUE”, then K will be chosen automatically by running a range
of K values and choosing clustering from the K that gives the largest average silhouette width.

• ‘removeSil’: This argument takes on logical values and determines whether samples with small sil-
houette width are removed from their cluster assignment, in the sense that they are not given their
original cluster assignment but instead “unassigned” (-1).

• ‘silCutoff’: This argument takes on numerical values and is only applicable for parameter combi-
nations where ‘removeSil’ is TRUE. In this case, the values of ‘silCutoff’ determines the silhouette
width cutoff used for determining that the sample will be removed from their clustering assignment
and instead classified as unassigned. This value defaults to 0, but can take on a discrete set of values,
in which all of these values will be attempted.

Most of the clustering methods and procedures available in the package are straightforward applications
of general, existing techniques. We document here only a few of the clustering methods that we have
extensively adapted.

“hierarchical01”: Hierarchical clustering based on within-cluster similarity We provide a clustering
method based on the level of similarity between samples within each cluster and call this method “hierar-
chical01” (to distinguish it from hierarchical clustering with a prespecified number of clusters K obtained
via cuttree). Specifically, we first run hierarchical clustering on the data, using the standard hclust
function and an input dissimilarity matrix D. The matrix D, however, is required to take on values between
0 and 1. Starting at the root, we go down the hierarchical clustering dendrogram, checking for each node
N whether it satisfies one of two possible criteria for determining whether the samples that comprise it are
sufficiently similar:

1. all pairwise distances are < α (method “maximum”);
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2. for each sample i, mi < α, where mi is the mean of the pairwise distances of sample i to the other
samples in the cluster (method “average”).

The default option is “maximum”. Samples that do not satisfy this criterion for any node are not assigned to
a cluster.

“tight”: Adaptation of the code of [2] The tight clustering algorithm of [2] included subsampling of
the data, a method for clustering of the resulting dissimilarity matrix D, and a procedure for repeating this
process sequentially. We have modularized these steps.

We have modularized the method for clustering a dissimilarity matrix D that takes on values in (0, 1)
into a possible clustering method for the user to pick (“tight”). This method also requires not determination
of the number of clusters K, but a level of allowed dissimilarity α. The code is pulled from the package
tight with minimal adaptation applied to the clustering procedure. It was written with the intention of
being applied to a D that was the result of subsampling. The algorithm first finds core samples, namely
those that have dissimilarity 0, and picks the largest such group (where the largest group may be of size one).
It then adds samples to that core group if samples have dissimilarity with all of the core group members that
is no greater than α, and repeats this process until no remaining samples satisfy the criteria. Samples that
do not satisfy this criteria are not assigned to a cluster.

2.1 Dimensionality Reduction

There are two varieties of dimensionality reduction supported in ‘clusterExperiment‘ package via that “re-
duceMethod” argument.

1. creating a reduced data set by subsetting the original dataset to a smaller subset of genes, which is
done by calculating statistic for each gene, and filtering to only genes with high (or low) values of this
statistic.

2. creation of a smaller number of new features that are functions of the original genes, i.e. not a
simple selection of genes, but a new set of variables to represent the data (some times referred to as
“metagenes”)

For simplicity, we’ll refer to the first as filtering of the data and second as a dimensionality reduction. This
is because in the first case, the reduced data set can be quickly recreated by subseting the original data, so
long as the per-gene statistics have been saved. This means only a single vector of the length of the number
of genes needs to be stored for the first type of dimensionality reduction (filtering) while the second kind
requires saving a matrix with a value for each observation for each new variable.

The ClusterExperiment class created in clusterExperiment inherits from the standard Bio-
conductor SingleCellExperiment class. Briefly, the SingleCellExperiment class extends the
SummarizedExperiment class to give a structure for saving the reduced matrices from the second class
of dimensionality reductions we described above. This gives a unified way to save the results of applying a
dimensionality reduction method of the second type. Multiple such dimensionality reductions can be stored,
and the user gives them names, e.g. “PCA” or “tSNE”.

The clusterExperiment package uses this structure both to save the results of dimensionality re-
ductions if they are calculated by the clusterMany function and also to allow the functions of the package
to reuse them if they have already been created. In this way, all of the functions in the clusterExperiment
package can make use of any dimensionality reduction method previously calculated and saved by the user.

The clusterExperiment package also provides a similar procedure for storing the filtering statis-
tics (i.e. statistics calculated on each gene that can be used to subset to a reduced set of genes). Therefore, if
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the user has already calculated a per-gene statistic and appropriately saved it, this user-defined statistic can
be used for filtering instead of those provided by the package.

2.2 Subsampling

The subsampling option in clusterExperiment generates clusterings based on randomly sampled sub-
sets of the full set of n observations to be clustered. Each resampled subset of the dataset is clustered,
leading to a collection of clusterings which are then summarized by an n × n co-clustering matrix, with
entry pij defined as the proportion of times the pair of samples i and j were in the same cluster across all of
the resampled datasets. clusterExperiment offers three different ways in which the calculation of pij
can be performed, which differ based on whether samples not included in the random subset are classified
into clusters.

InSample The classification of a sample into clusters is done only if the sample is part of the random subset
and the classification they receive is that given by the clustering algorithm.

All After the clustering has been produced on the random sample, all samples are then (re)classified into
clusters based on a classification method dependent on the clustering function.

OutOfSample After the clustering has been produced on the random sample, only samples not included
in the random sample are classified into clusters based on a classification method dependent on the
clustering function.

The classification method mentioned above to classify an arbitrary sample into a cluster must be defined,
and not all algorithms will have such a feature (it is an optional part of defining a ‘ClusterFunction’ object).
If missing, clusterExperiment will silently set the option to “InSample” which does not require a
separate classification method. Note that because of the randomness in subsampling, the number of times a
pair i and j were in the random subset varies for each pair, and thus the denominator of pij for “InSample”
and “OutOfSample” is a random variable differing for each pair (i, j). For example, if m subsamples are
taken of size k out of N total cells, then the expected value of the denominator for “InSample” is

m
k2(k − 1)2

N(N − 1)
.

The default option is “All”, if the clustering algorithm given has a classification function provided, in
which case the proportion is always based on all samples. Of the built-in functions provided by
clusterExperiment, “kmeans”,“pam”, and “clara” all have classification functions provided, which is
to classify them to the nearest cluster center.

Subsampling therefore defines a dissimilarity matrix between samples, with entries Dij = 1 − pij , but
does not itself define a clustering of the samples. The dissimilarity matrix D is next used by the RSEC
workflow to cluster the samples. It is important to note that the clustering algorithm applied to D does
not need to be that which was used on the resampled datasets. For example, a matrix D that results from
partitioning each of the resampled datasets into K clusters will not necessarily be amenable itself to a
partition into K clusters. Our experience has been that because D is the result of averaging over clusterings,
it is more robust to the choice of K than the underlying clustering algorithm.

Furthermore, becauseD is a dissimilarity matrix, with entries on a well-defined scale of 0-1, it is intuitive
to constrain the level of between-sample dissimilarity within clusters, rather than setting a particular K for
the number of clusters [2]. In this way, the choice of K becomes instead a choice of α ∈ (0, 1), defining the
amount of dissimilarity allowed within a cluster. While this doesn’t change the reliance on the selection of a
tuning parameter, we find that specifying the dissimilarity α is more natural and also more robust for datasets
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with widely differing numbers of actual clusters to detect. The clusterMany function, of course, allows
the user to easily apply multiple methods for clustering the D matrix, as well as a range of corresponding
parameters α or K, for comparison.

Because subsampling results in two layers of clustering algorithms – one applied to the resampled
datasets and one applied to the dissimilarity matrix D – this leads to an expansion of choices that can
be tried by clusterMany. For simplicity, clusterMany only allows the key parameters involved in
the clustering of the matrix D to be given multiple options, while the parameters for the clustering of the
resampled datasets are fixed for all the comparisons that involve subsampling (though the user can set them).

2.3 Sequential clustering

As mentioned previously, the tight algorithm of [2] included both subsampling of the data, a method for
clustering of the resulting dissimilarity matrix D, and a procedure for repeating this process sequentially.
We use the process they describe there for sequentially finding stable clusters for our sequential method.
As noted above, we modularize the components of their algorithm, generalizing the sequential clustering
to apply to any clustering technique, and with or without subsampling. Specifically, the “best” cluster is
chosen to be that cluster which varies the least in its membership as the parameter controlling the number of
clusters K is increased, as measured in the maximal percentage overlap of clusters from clusterings from K
and K + 1 (the ratio of cardinality of intersection to cardinality of union). In the case where the user does
not make use of resampling, the parameterK refers directly to the number of clusters for the main clustering
algorithm; if instead the user chooses to make use of resampling, the parameter K refers to the number of
clusters for the base clustering method run on the subsampled datasets (and does not directly dictate the final
number of clusters). When a cluster is found where a proportion of at least β of its members remain in it as
the parameter K is increased, then the cluster is identified to be a stable cluster, the samples in it removed
from further consideration, and the process begins again to find another stable cluster.

In more detail, under our generalization, the sequential searching for a cluster works in one of two ways.
Either it is applied to

1. the results of a clustering algorithm that directly clusters the data, in which case the clustering function
must be such that it requires the user to set K, the number of clusters

2. the results of a clustering algorithm that is applied to a dissimilarity function D that is the result of
repeated clustering of subsampled data. In this case the clustering algorithm applied to the subsampled
data must be such that it requires the user to setK, but the algorithm applied to the resultingD matrix
is arbitrary; if the clustering matrix applied to D requires the user to set K to get a clustering, it is set
to the K used in subsampling.

The sequential starts by setting the value K = k0 (either at the main clustering level or the subsampled
clustering level), and continues to increases k0 until a cluster is found such that the similarity between the
cluster with K and K − 1 is greater than or equal to β. Specifically the method looks at the top M clusters
in size from K and K − 1, and between each pair of two clusters of samples i(K) and j(K − 1) that are
clusters within the clusterings found withK andK−1 clusters, respectively, the following stability measure
is calculated:

|i(K)
⋂
j(K − 1)|

|i(K)
⋃
j(K − 1)|

The cluster j(K − 1) with stability ≥ β is chosen and if multiple such clusters are found, then the largest
such cluster j(K − 1) is chosen by default. After finding such a cluster, the samples in this cluster are
considered a cluster and removed from further consideration and k0 is decreased by 1 and the process is
continued until no more clusters can satisfy this condition, or there are too few samples remaining.
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3 makeConsensus

In order to find the ensemble clustering from the results of clusterMany (or what ever set of clusterings
given by the user), makeConsensus first converts all non-assigned samples in a clustering (internally
encoded with a -1 or -2) into NA values.

If the user requires all samples to be clustered together 100% of the time, then the makeConsensus
simply partitions the samples based on the set of unique cluster identifications across all of the clusterings,
including non-assignment to clusters (“-1” values).

Otherwise, makeConsensus calculates the Hamming distance between samples, which is the number
of positions at which the corresponding symbols in a string are different, and converts this into a percentage.
This calculation is implemented by adapting the code posted by Johann de Jong [3] for finding hamming
distance quickly in R, and adapted by us to exclude “-1” (NA) values in counting and in finding the propor-
tion so that the proportion given back is the proportion of times a pair of samples do not cluster together out
of the clusterings for which both samples have a cluster assignment. Those samples that have no clusterings
for which neither are “-1” are given a distance of 1.

This distance matrixD is then provided to our internal clustering wrapper, which applies our “hierarchi-
cal01” clustering described above with the method argument set to “average”, and α equal to 1 − p, where
p is the user-given value describing the how much shared proportion they want for samples to be consid-
ered clustered together. Samples that do not meet that requirement are not given any cluster assignment.
Furthermore, any samples with too large of a number of unassigned (-1) values across the samples is then
unassigned from their cluster (i.e. given value “-1”), the cutoff for which can be controlled by the user.

4 makeDendrogram

For each cluster, makeDendrogram calculates the median per gene/feature within a cluster. The function
then calls the R function hclust on the squared euclidean distance of the median of the clusters. The
makeDendrogram function allows users to filter the genes that are used in the calculation, with the default
being to use the top 500 genes based on median absolute deviation (“mad”).

Also passed to hclust is the number of samples per cluster via the argument members of hclust.
According to the documentation of hclust, if this argument is given, the input dissimilarity matrix “is
taken to be a dissimilarity matrix between clusters instead of dissimilarities between singletons and members
gives the number of observations per cluster. This way the hierarchical cluster algorithm can be started in
the middle of the dendrogram, e.g., in order to reconstruct the part of the tree above a cut (see examples).”

5 mergeClusters

mergeClusters takes as input the dendrogram from makeDendrogram and performs for each node
N of the dendrogram a significance test (per gene) of the difference in the mean expression between the
samples that are descendants of the two daughter nodes of N . The differential expression is determined by
first fitting the full model (i.e. all clusters included) and then a test of the contrast (or difference) between the
average of the means of the clusters that are the descendants of one daughter nodes ofN with the average of
the means of the clusters that are the descendants of the other daughter node. Note that because the clusters
are of different sizes, this is different than simply applying a t-test between the samples descendant from one
daughter node against the samples descendant from the other daughter node. This reduces the dominance of
large clusters. This is implemented using the getBestFeatures function, and the user can choose the
DE method to be used ( limma [4], limma with voom weights correction for counts [5], edgeR [6], or edgeR
with weights, e.g. to account for zero-inflation [7]).
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The resulting full set of p-values are provided as input to one of several different methods for calculating
the proportion of non-null hypothesis tests in a set of p-values. The available methods are

• “Storey” refers to the method of [8] where the proportion of null hypothesis is estimated as

# pvalues > λ

(1− λ)(# pvalues)

and we set λ = 0.5.

• “PC” refers to the method of [9] where the proportion null is estimated as twice the average p-value.

• “JC” refers to the method of [10], and the implementation is copied from code available on Jiashin
Ji’s website [11] as of December 16, 2015.

• “locfdr” refers to the method of [12] and uses the implementation in the package locfdr.

• “MB” refers to the method of [13] and uses the implementation in the package howmany.

• “adjP” refers to simply calculating the proportion of genes that are found significant based on a FDR
adjusted p-values (method “BH” in p.adjust in R) and a cutoff of 0.05.

If the method chosen is “adjP”, a further value can be optionally given to the argument “logFCcutoff”,
indicated that a gene is only considered significant in this calculation if both the p-value is less than
0.05 and the estimated log fold-change is greater than the value of “logFCcutoff”.

6 The RSEC Function

While the main steps of our clustering framework are implemented in separate functions available to the
user, we provide a single wrapper function RSEC around these individual functions, with parameter choices
we find particularly relevant for finding robust, small, homogenous clusters that are often desirable for large
or noisy gene expression studies, such as scRNA-Seq. Specifically, the clustering method used in the first
step of RSEC is the tight clustering strategy of [2] adapted by us for single-cell studies. This clustering
method makes use of both the subsampling and sequential detection options of clusterMany that make
the clustering more robust. Furthermore, it results in small, homogeneous clusters without explicitly re-
quiring the user to define the number of clusters K a priori; instead, it requires the user to define the level
of similarity α between samples in a cluster that is desired. These parameters are more intuitive and scale
better with the large numbers of samples that are seen in single-cell sequencing studies. Furthermore, our
experience is that because of the underlying subsampling, variations in these parameters do not result in
large changes in clusters, as compared to changing K for clustering methods. During the step of RSEC that
varies the parameters of this method, the resulting ensemble clustering resembles a robust combination of
perturbed clusterings.

7 Data used in the Manuscript

We used the single-cell RNA-Seq dataset on neuronal stem cell differentiation in the mouse olfactory ep-
ithelium (OE) from [14]. The featureCounts estimates of the number of reads per gene for this data is
available from GEO with accession number GSE95601. The published clustering results (to which we com-
pared our results) were retrieved from the github repository of [14], www.github.com/rufletch/
p63-HBC-diff.
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We preprocessed the read count data following the procedures of [14], including their normalization
and filtering of genes. Specifically, we normalized the data by performing PCA on quality metrics of
the samples, and then regressed out from the gene expression the effects due to the first PCA of the QC
metrics. We removed all undetected genes (i.e. counts of 0 in all cells), as well as removing the ERCC
and the CreER gene (used for FACS sorting of the cells). We filtered cells based on QC-metric using the
metric sample filter function available in the scone package [15]. We further removed genes that
did not have at least 40 counts in 5 cells. We note that [14] further removed some cells that they identified
as contaminant which we did not.

See the methods of [14] for details on their analysis and choice of parameters for RSEC.
The user implemented function “NN” consists of building a k-nearest-neighbors graph between the cells

using the function buildSNNGraph from the scran [16] package. We then find the densely connected
subgraphs using the package cluster walktrap in the R package igraph[17]. In this case, K corre-
sponds not to the number of clusters, but the number of nearest neighbors to use in building the graph. To
find the best K, the best choice of K was chosen between 5, 10, 15, 20, and 25 nearest neighbors. For the
other methods, where K was the number of clusterings, the best K was found by ranging K from 4 to 15.

The second dataset we used consisted of 14,437 cells from the hypothalamus of adult mice sequenced
using the Drop-Seq technology [18]. We accessed the data via the bioconductor object of the data made
publicly available by [19] at:
https://scrnaseq-public-datasets.s3.amazonaws.com/scater-objects/chen.rds).

We followed the authors’ description of how they prepared the data, normalizing and scaling the data
using the ‘NormalizeData’ and ‘ScaleData’ functions from the Seurat package, version 2.3.1, before per-
forming PCA via ‘RunPCA’ on the results. These PCA results were used by RSEC in creating the clusters
(not our built-in calculations of the PCAs).

All of the code for running the analyses, including downloading the data, is available in the github
repository for this paper: www.github.com/epurdom/RSECPaper.

7.1 Comparison of RSEC to clusters of [18]

The authors of [18] report 45 clusters in their data. After finding the clusters, they classify these clusters into
various categories based on the overall gene expression of the cells in these clusters in order to understand
their biological function. They classify 34 of these clusters as neuronal, based on Snap25 and Syt1 expres-
sion, which are further broken down into “Glu” (15 clusters) and “GABA” (18 clusters), and a remaining
“Hista” cluster. The remaining 11 non-neuronal clusters are characterized in the original paper based on
high expression of the following markers: Olig1 (oligodendrocytes, 4 clusters), Cldn5 (endothelial cells, 2
clusters), C1qa (2 clusters), and Sox9 (3 clusters). We note that the labels provided with the public data do
not exactly match those in the paper. Specifically, Endo1/Endo2 of the paper appears to correspond to the
clusters named Epith1/Epith2 in the publicly available data. Similarly, there is no “NFO” (newly formed
oligodendrocyte) cluster as described in the paper, but based on the Fyn marker that the paper’s supplemen-
tary results associate to the cluster, we have identified it as the “IMO” cluster label of the public data. The
public data also contains a 46th cluster “SCO”, which we are not able to match to any cluster described in
the paper.

S4 Fig(b) compares RSEC to the eight large categories of [18] defined by the markers above, while S4
Fig(a) shows the comparisons to the full set of 46 clusters labels provided in the public data.

We now consider further groups that have some small, but noticable differences between RSEC and the
clustering of [18]: 1) the division of neuronal cells into inhibitory and excitatory neurons and 2) The division
of epithelial cells.
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Inhibitory and Excitatory Neurons The authors of [18] further classify their neuronal clusters into in-
hibitory and excitatory neurons, (“Glu” and “GABA” in [18]) based on expression of the marker genes
Slc17a6 and Slc32a1, respectively. We see that RSEC conserves this split (S4 Fig(c)), except for a slight
mixing in one of the clusters found by RSEC (m30). However, on closer examination of the cells in m30,
essentially none of the cells in this cluster expresses the excitatory gene marker Slc17a6, including those
identified by [18] as excitatory (35 cells), while the vast majority of cells in this cluster show strong expres-
sion of inhibitory markers (Fig S1). This seems to confirm that this is a cluster of inhibitory cells, not a
mixture of the two.

Endothelial Clusters Two clusters of [18] were classified by the authors as Endothelial based on the
expression of Cldn5. RSEC similarly contains a set of clusters that cleanly separate out the Endothelial cells
of [18] from the rest and and show expression of Cldn5 (Fig S2). However, the RSEC clusters do not match
the further division of the endothelial cells into “Endo1” and “Endo2” clusters given by [18]. Instead, RSEC
finds six clusters containing the Endothelial cells of [18], which like the neuronal clusters contain a number
of cells not classified into any cluster in [18] (Supplementary Figure S2a). Considering only those cells
assigned a cluster in [18], some of these clusters are largely subdivisions of the “Endo1” or “Endo2” clusters
of [18] (m6, m13, and m32), while some have more substantial mixing, with m8 being roughly split between
the “Endo1” or “Endo2” clusters of [18] (Supplementary Table S1). The authors characterized “Endo1” and
“Endo2” biologically by their expression of the genes Slc38a5 and Myh11 (in the smaller group of 3,319
cells). We evaluated these expression of these three Epithelial genes markers on the full set of cells, and see
that the expression of the Slc38a5 and Myh11 markers is not uniform even in “Endo1” and “Endo2” clusters
defined by [18]. In fact in both of their clusters, the median expression value of the corresponding marker
of “Endo1” and “Endo2” is zero, though the upper-quartile of the cluster distinguishes the two clusters
(Supplementary Figures S2c,d) ). The limited expression of these markers even in the original clustering
of [18] makes it difficult to precisely evaluate the clustering of RSEC. However, the RSEC clusters seem
to divide the endothelial cells between these three marker genes somewhat more carefully (Supplementary
Table S1). In particular, the RSEC clusters separate out those cells showing no expression of the original
Cldn5 marker of [18] for Endothelial cells (clusters m13 and m16). Similarly, those clusters that primarily
contain “Endo2” cells (clusters m13, m16, and m32), are divided by RSEC into those that express Myh11
(m16 and m32) and those that don’t (m3), unlike the “Endo2” cluster which had the median expression of
Myh11 at zero (see Supplementary Table S1 and Supplementary Figure S2). Combined with Cldn5, this
separates these three clusters more precisely than the original clusters of [18].
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(a) Snap25 (Neuronal) (b) Syt1 (Neuronal)

(c) Slc17a6 (Glu) (d) Slc32a1 (GABA)

(e) Gad1 (GABA) (f) Gad2 (GABA)

Figure S1: Boxplots of the (log) gene expression values for neuronal markers in cluster m30 using
plotFeatureBoxplot. The cells are divided according to their original classification by [18]: GABA
(102), Glu (35), Oligodendrocyte (15), Sox9+ (5), Endothelial (1), Hista (1) and Unassigned (418). Expres-
sion of either Snap25 or Syt1 define neuronal clusters in [18], while Slc17a6 and Slc32a1 are used by [18] to
subdivide them into Glu and GABA clusters, respectively. Gad1 and Gad2 are two other markers of GABA
neurons [20].
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(a) Comparison of endothelial samples, RSEC and [18]

(b) Cldn5 (clusters of [18]) (c) Slc38a5 (clusters of [18]) (d) Myh11 (clusters of [18])

(e) Cldn5 (RSEC) (f) Slc38a5 (RSEC) (g) Myh11 (RSEC)

Figure S2: Boxplots of the (log) gene expression values for endothelial markers using
plotFeatureBoxplot. We show boxplots of the expression of the three markers used by [18] to charac-
terize the biological function of clusters “Endo1/Epith1” and “Endo2/Epith1”: Cldn5 (Endothelial), Slc38a5
(Endo1), Myh11 (Endo2). We show both the original clusters of [18] and those of RSEC.
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# Cells # Assigned Cldn5 Slc38a5 Myh11
Cluster Total by [18] (Endo) (Endo1) (Endo2) % Endo1 % Endo2

m5 373 342 3 7 7 86 14
m6 342 323 3 (*) 7 94 6
m8 335 317 3 7 7 55 45

m13 120 38 7 7 7 0 100
m16 260 123 7 7 3 17 83
m32 20 15 3 7 3 7 93

Endo1 818 3 (*) 7 100 0
Endo2 379 3 7 (*) 0 100

olfactory

Table S1: Summary of expression Endothelial markers of [18]. 3corresponds to the gene being well
expressed, 7 corresponds to non-expressed, and (*) corresponds to a mixture of expressed and non-
expressed. The percentage in Endo1/Endo2 are based only on those cells classified by [18]. See Fig S2 for
more detail.
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