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Simulation method

The simulation procedure begins with a population of copynumber-weighted HQCS
sequences from a real FLEA run. The population is augmented with mutants of the
input sequences, to ensure that the simulated ground truth population contains
sequences that differ by only a few bases. Each HQCS has a p = 0.2 probability to
donate 30% of its abundance to a closely-related mutant, which contains one, two, or
three substitutions with equal probability. This mutated population is treated as the
ground truth for all experiments.

In order to simulate sequencing at different depths, different numbers of N reads are
drawn from the same ground truth population for each time point. For each value of N
(300, 1,000, 3,000, and 10,000 in this paper), and for each time point, N sequences are
sampled with replacement from the copynumber-weighted population. Each read is then
mutated with an error model derived from true Pacific Biosciences sequences, in order
to mimic the errors introduced by sequencing, especially homopolymer length errors.

To simulate a read r from template t, it is necessary to model both r itself and its
Phred scores. First an error rate p is drawn from p ⇠ Gamma(↵ = 2, ✓ = 0.0017). The
length n for each run of identical bases in t (including singletons) is lengthened or
shortened with equal probability to be m = max(n± ✏, 0), where
✏ ⇠ Poisson(� = p/c · n1.5). c is calibration parameter chosen in these experiments to
be 1.55 to match observed errors. This process introduces homopolymer length errors,
which account for most of the error in Pacific Sciences reads. Then point mutations are
introduced at each position with probability p/4 of occurring and equal probability for
each nucleotide.

Finally, error probabilities are computed for each base as P = p/4 +m1.5/m, which
is the per-base mutation rate plus a homopolymer error rate. The final simulated Phred
scores are obtained by adding error per-base errors ✏ ⇠ N (0, 0.1) in the natural log
domain to these probabilities, then converting to Phred scores.

Sequence order for clustering

USEARCH’s cluster fast algorithm runs in a single pass, and therefore is sensitive to
the order of the input sequences. We investigated four different strategies: none (no
re-ordering), shuffle (randomly shuffle the sequences), sort (sort from high to low
quality, as measured by expected number of errors), and reverse sort (sort from low to
high quality). Ten trials of simulated sequencing were run to generate 3,000 reads. FLEA
was run on each dataset with all four ordering strategies.

The results clearly favor reverse sorting, as shown in Table A, which does better on
average across the ten trials, and in the worst case it does much better. In the worst
case, other methods suffer from false negatives, as shown in Table C. We hypothesize
that this behavior is caused by reads from the rare templates – which have a low chance
of having a high-quality representative read – loading onto the nearest high-quality
template.
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Table A. EMD score statistics for different ordering strategies, summarized over ten
trials.

strategy min median max

none 1.161733 1.754568 4.650523
shuffle 1.042900 1.877201 15.177280
sort 1.362890 2.170702 15.585899
reverse sort 1.077585 1.495208 2.853009

Table B. EMDFP score statistics for different ordering strategies, summarized over
ten trials.

strategy min median max

none 0.0 0.012702 0.726121
shuffle 0.0 0.005160 0.634556
sort 0.0 0.019261 0.839726
reverse sort 0.0 0.005992 0.079191

Table C. EMDFN score statistics for different ordering strategies, summarized over
ten trials.

strategy min median max

none 0.109267 0.363806 4.064444
shuffle 0.104379 0.359525 13.443283
sort 0.170185 0.623503 13.672487
reverse sort 0.096213 0.233316 1.011137
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Figure A. Distribution of corrections in V03.

Analysis of error correction in P018 run

To quantify the kinds of corrections FLEA makes, we took each quality controlled CCS
sequence and aligned it to its corresponding HQCS. Counting differences reveals far
more indels vs substitutions, as expected under the PacBio error model: Fig. A through
Fig. F. Different time points, however, have different correction profiles, and it is not
clear whether this is due to the behavior of the error correction itself, or varying noise
profiles caused by differences during amplification and sequencing.

Additionally, the number of corrections (both substitutions and indels) per CCS
sequence correlates extremely strongly with the expected number of errors per sequence,
as derived from the QV scores. The Spearman correlation coefficients range between
0.69 and 0.76. Scatter plots are depicted in Fig. G through Fig. L. The number of
expected errors becomes discrete for values � 10 in these plots because of rounding in
USEARCH.
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Figure B. Distribution of corrections in V06.

Figure C. Distribution of corrections in V12.
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Figure D. Distribution of corrections in V22.

Figure E. Distribution of corrections in V33.
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Figure F. Distribution of corrections in V37.

Figure G. Number of corrections versus expected number of errors in V03
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Figure H. Number of corrections versus expected number of errors in V06

Figure I. Number of corrections versus expected number of errors in V12
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Figure J. Number of corrections versus expected number of errors in V22

Figure K. Number of corrections versus expected number of errors in V33
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Figure L. Number of corrections versus expected number of errors in V37
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Analysis of false negatives in simulation results

As shown in the main text, FLEA fails to recover some genuine sequences. All such
failures are low-abundance sequences, where each makes up at most 1.6% of the
population, and most make up much less. A breakdown appears in Table D. The
fraction of the population represented by these false negatives at each time point is
small: 10% of the population or less in most cases. Moreover, most of these templates
differ from a FLEA-inferred sequence by only one base.

Fig. M plots abundance versus edit distance to nearest HQCS for all template
sequence. The false negative sequences obviously have an edit distance � 1, but the
positives are also shown for reference. These plots confirm that the templates that FLEA
fails to find tend to be extremely rare and also very similar to more high-abundance
templates that were recovered.

Table D. False negatives by time point. “Total” is the number of true template
sequences. False negatives are reported as n (x%), where n is the number of missing
sequence, and x is their total abundance in the population. “Off-by-one” false negatives
are sequences that do not appear in the FLEA results, but a sequence that differs by only
one base does. “Remaining” false negatives differ by more than one base from any
sequence in the FLEA results.

time point total false negatives off-by-one remaining

V03 127 65 (10.02%) 27 (6.57%) 38 (3.45%)
V06 147 52 (15.23%) 26 (7.77%) 26 (7.46%)
V12 104 16 (3.3%) 12 (2.55%) 4 (0.75%)
V22 137 26 (6.48%) 16 (4.38%) 10 (2.10%)
V33 80 35 (7.84%) 15 (4.67%) 20 (3.17%)
V37 79 19 (2.32%) 13 (1.61%) 6 (0.71%)
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Figure M. From the N=10,000 simulation condition, for each time point, we depict the
edit distance from each true template to the nearest HQCS. The Y axis displays the
variant frequency (note: the number of reads is a Binomial variate from this, so many
low abundance variants may generate no reads at all). In red, we color all true template
sequences which are within 1bp of another true template.
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Figure N. Timeline of each task in the FLEA pipeline. Tasks are annotated with time
per task and max memory used. Image generated with Nextflow’s -with-timeline
option.

Pipeline visualizations

Nextflow provides pipeline introspection and performance tools including tracing
reports, task order graphs, and timeline visualizations (Fig. N).
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