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1 Methods descriptions

This section provides some details about different parts of our modeling approach: parameter balancing for

obtaining kinetic parameters; a fast implementation of enzyme cost minimization; the conversion between

enzyme-specific biomass production into cell growth rates; and a comparison of EFCM to traditional kinetic

and constraint-based modeling approaches.

1.1 Parameter balancing

Parameter balancing [1] is a method for translating incomplete and possibly inconsistent sets of kinetic

constants into a complete, consistent set of model parameters. It works as follows. We collect all relevant

quantities that appear in the data or in the model (e.g. kcat, Keq, or kM values) and merge them into a

vector y. The model parameters must satisfy Wegscheider conditions and Haldane relationships, which

define linear equality constraints between their logarithmic values. To satisfy these constraints, we write all

these quantities as linear combinations of independent parameters (ln kV, ln kM, and µ◦ values), with the

definition kV =
√
k+

cat k
−
cat. The independent parameters, which we collect in a vector x, can now be varied

without violating any constraints. The linear dependence between complete and independent parameter

sets can be written as y = Rx, with a matrix R derived from the model structure. Using this equation as a

linear regression model, we can convert an experimentally known vector ydata (which may be incomplete)

into a best estimate of the underlying vector x. Using the estimate x, and multiplying again by R, we obtain

a completed, consistent version of y. Since the regression problem is usually underdetermined, we employ

Bayesian priors to obtain plausible estimates even from sparse data. Accordingly, the result is not simply a

point estimate of y, but a multivariate Gaussian posterior distribution for the possible parameter vectors y.

A best estimate is obtained from the center of the distribution (or its maximum point, if further constraints

are applied); from the covariance matrix, we obtain uncertainties of individual model parameters as, well as

the correlations between them. For details and an applicable online tool, see www.parameterbalancing.net.

1.2 Enzyme cost minimization implemented in the GAMS modeling system

Finding the minimal enzyme cost for an individual EFM is a convex problem and can therefore be solved with

local optimization methods and in polynomial time. This allows us to use a powerful solver that optimizes a

single enzyme profile in a few seconds. We have implemented enzyme cost minimization within the General

Algebraic Modeling System (GAMS) modeling system [2], accessible through the NEOS server (https:

//neos-server.org/neos/), which provides a convenient way to write down the optimization problem

and uses automatic differentiation techniques to exactly evaluate derivatives, e.g. of the functions defining

the constraints and objective function of the model. This is important since it allows nonlinear optimization

solvers to efficiently use this information for improved solution speed and accuracy. To define an optimization

problem, the user provides the metabolic network (in the form of reaction stoichiometries), kinetic constants,

fluxes, and possibly enzyme costs. The data can be provided as a single csv file or a collection of csv files,

and the user can select files defining the model and its parameters, as well as one of the optimization solvers

linked to the GAMS system. As a default setting, general rate equations as in this paper are used (modular

rate laws [3], possibly with simple allosteric regulation). However, the implementation also allows for

custom rate equations, such as the biomass equation in this paper (a case study with explanations can

be found on http://www.neos-guide.org/content/enzyme-cost-minimization). Additional arguments

allow for defining bounds on subsets of the decision variables, changing the solver, and setting options for

the solver. We used metabolite bounds of e−20 to e5.5 and enzyme bounds of 0 to e20 in our simulations.
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Quantity Symbol Physical unit
Metabolite level (metabolite i) ci mM
Metabolite flux (reaction l) vl mM s−1

Enzyme concentration (enzyme l) El mM
Biomass production vBM mg l−1 h−1

Total enzyme cost Emet mg l−1

Enzyme doubling time τmet h
Enzyme specific biomass production rBM h−1

Cellular protein mass Ptot mg l−1

Biomass concentration cBM mg l−1

Protein/biomass mass fraction fprot unitless
Enzyme/protein mass fraction fccm unitless
Doubling time T h
Cell growth rate µ h−1

Table S1: Mathematical symbols and physical units used in the formulae.

Although ECM is applied here to EFMs only, it can be used to compute the enzyme cost of any given flux

mode. The calculations for this article were executed on a shared server: a Dell PowerEdge R430 server with

the following configuration: CPU - 2x Intel Xeon E5-2698 @ 2.3GHz (32 cores total), HT Enabled, Memory

- 192GB RAM, Disk - 4x 300G SAS drives setup in RAID5, Network - 1Gb/s Ethernet.

1.3 Converting enzyme investments into cell growth rates

Being able to compute enzyme-specific biomass production rates, we next translate these rates into cell

growth rates. The growth rate of a cell is given by µ = vBM/cBM, where cBM is the biomass concentration

(i.e. the amount of biomass per cell volume) and vBM is the rate of biomass production (i.e. the amount of

biomass produced per cell volume and per unit time). The cell’s growth rate can be approximated based on

the enzyme cost of biomass production, where higher enzyme-specific biomass production rates entail higher

growth rates. Therefore, an assessment of enzyme-specific biomass production rates (in optimization, or in

the rate/yield scatter plots) is equivalent to an assessment of growth rates. Here we derive two conversion

formulae: a linear formula, which assumes a constant amount of metabolic enzyme within the biomass, and

a nonlinear one, which takes into account the growth-rate-dependent investment in ribosomes. As shown in

Figure S1, predicted growth rates yield a overall picture similar to the direct assessment of enzyme-specific

biomass production.

Linear growth rate formula based on a fixed proteomic enzyme fraction

To estimate µ = vBM/cBM from the enzyme-specific biomass production rBM = vBM/Emet, we need to

know the ratio Emet/cBM, i.e. the fraction of biomass formed by metabolic enzymes. Empirically, metabolic

enzymes (or more precisely: the metabolic enzymes considered in our model) occupy about one eighth of the

biomass (in mass units). The mass fraction of protein within biomass, fprot = Ptot/cBM ≈ 0.5 (BioNumber

101955 [4]), is relatively constant across cell types. The mass fraction of metabolic enzyme within the

proteome, in E. coli, varies around fccm = Emet/Ptot ≈ 25% (from proteomics data [5]). If these numbers

were constant, the growth rate

µ =
vBM

cBM
=

vBM

Emet︸ ︷︷ ︸
rBM

Emet

Ptot︸ ︷︷ ︸
fccm

Ptot

cBM︸︷︷︸
fprot

(1)
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would be proportional to the enzyme-specific biomass production rBM, with a prefactor of fccm·fprot ≈ 0.125:

µ ≈ 0.125 rBM. (2)

Nonlinear growth rate formula based on growth-dependent enzyme fraction

In reality, the amount of metabolic enzyme within the proteome is subject to change. As shown by experi-

ments and as explained by resource allocation models [6], the fraction of metabolic enzymes decreases with

the growth rate, at least if the growth rate changes are caused by varying metabolic efficiency (e.g. due

to different carbon sources). We can account for this changing fraction by using a modified formula. In

experiments where cell growth is controlled by nutrient quality or by dilution in chemostats, we can assume

a linearly decreasing fraction [6]

Emet

Ptot
= a− b µ (3)

with positive coefficients a and b. These coefficients can be estimated from proteomics data [5]: the protein

fraction devoted to core carbon metabolism decreases from ≈ 25% during slow growth (µ = 0.11/h) to

≈ 18% during faster growth (µ = 0.48/h), leading to estimates a ≈ 27% and b ≈ 20% h. Inserting (3) into

(4.6) and solving for µ, we obtain the formula

µ =
a fprot rBM

1 + b fprot rBM
. (4)

By inserting the numerical values, we obtain

µ =
0.27 · 0.5 · rBM

1 + 0.2[h] · 0.5 rBM
=

0.135 rBM

1 + 0.10[h] · rBM
. (5)

In our approximation formulae (2) and (5), µ increases with rBM. This is why we claim that maximizing

the growth rate µ is equivalent to maximizing the ratio rBM = vBM/Emet, or minimizing Emet at given vBM.

As shown in Figure S1, the nonlinearity introduced by the second formulae has no effects on the qualitative

rate/yield trade-offs. The derivation of Eqs (4) and (4.6) is illustrated in Figure S1(c). Finally, we can rewrite

formulae (2)-(5) in terms of doubling time. For that, we define the metabolic enzyme doubling time as

τmet ≡
ln(2)Emet

vBM
=

ln(2)

rBM
, (6)

and the cell doubling time (in hours) will thus be

T =
ln(2)

µ
=

τmet

fprot a
+

ln(2) · b
a

= 7.4 τmet + 0.51[h]. (7)

Nonlinear growth rate formula derived from an enzyme-ribosome trade-off

In the previous section, we derived the nonlinear efficiency/growth relationship from an empirical observa-

tion: the fraction of metabolic enzymes within the proteome decreases linearly with the growth rate. Here

we show an alternative derivation that directly refers to the resource allocation models by Scott al. [6]. To

derive the nonlinear relationship (4) between enzyme-specific biomass production and cell growth rate, we

assumed that the fraction of metabolic enzymes within the proteome decreases with the growth rate, and
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Figure S1: Biomass production rates and growth rates. (a) Cost/growth conversion formulae, derived by comparing
the biomass production rate allowed by an EFM (blue line) to the empirically observed metabolic enzyme investment
Emet/Ptot at a given growth rate µ (red line). More precisely, blue lines show the scaled biomass rate vBM/cBM as a
function of scaled enzyme investment Emet/Ptot. Top left: We assume that the observed enzyme investment is constant
(vertical red line). Since growth rate µ and scaled biomass production rate vBM/cBM are identical (y-axis), we can match
available enzyme budget (red line) and enzyme investment (blue line) for each EFM by taking the intersection point.
Top right: For each EFM, we plot the achievable growth rate (y-axis coordinate of intersection point in left plot) against
the biomass production rate per enzyme investment (slope of blue EFM line), scaled by the constant factor Ptot/cBM

(assuming that Ptot is a fixed fraction of cBM). The dots for all EFMs fall on a straight line, our linear conversion
function Eq. (4.6). Bottom: Alternatively, we assume that the observed enzyme investment decreases linearly with the
growth rate (diagonal red line, schematic drawing). Applying the same procedure, we obtain the nonlinear conversion
function Eq. (4). (b) Alternative derivation of the conversion functions, assuming an optimal partitioning of protein
resources into ribosomes and metabolic enzymes. Top: We assume that metabolic enzymes occupy a fixed fraction of
the proteome. Each EFM defines a biomass rate per enzyme investment (slope of blue triangle, called ax in Eq. (8);
compare slopes in (a)). An EFM with a higher slope (drawing on the right) can support a proportionally larger growth
rate, giving rise to our linear conversion function Eq. (4.6). Bottom: Now we assume a variable partitioning between
ribosomes and metabolic enzymes, and that the growth rate is limited both by ribosomal and metabolic activity. The
ribosomal efficiency (slope of brown traingle) is called aY in Eq. (8). Again, an EFM with a higher slope (right) supports
a higher growth rate, but the effect is now less pronounced because of the reallocation of protein resources (arrow).
This scenario leads, again, to the same nonlinear conversion function Eq. (4) as in (a). (c) Predicted enzyme-specific
biomass production versus biomass yield computed for all EFMs. (d) Predicted cell growth rate vs. biomass yield. The
nonlinear scaling (i.e. using equation (5)) of the growth rate has only minor effects on the Pareto plot. The horizontal
grey lines are guides for the eye. On the left, the lines are evenly spaced, every 2 [gr dw h−1 / gr enz]. On the right, the
same lines are converted to growth rates (in [h−1]) and do not appear evenly spaced since the conversion is nonlinear
(see Equation 4).
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we described this dependence by a simple linear function (with offset) which we extracted from proteome

data. This argument agrees with the resource allocation model by Scott al. [6], in which the proteomic

fraction of metabolic enzymes is given by a constant baseline amount plus a variable amount proportional

to the growth rate. To clarify this, we derive our formula again using the terminology of resource allocation

models (see Figure S1(d)). We assume that the proteome can be split into three mass fractions: a constant

fraction (about half of the proteome), a variable fraction x (consisting of metabolic enzymes), and a vari-

able fraction y (consisting of ribosomal proteins). We further assume that each of the fractions x and y is

proportional to the cell growth rate µ with different coefficients, i.e. µ = ax x = ay y. Here ax is given by (or

proportional to) the enzyme-specific biomass production rate (which we can compute from our model for

each EFM) and that ay is constant (because we do not consider the effects of translational inhibitors). With

these assumptions, the growth rate is given by

µ =
1

1
ax

+ 1
ay

[x+ y]︸ ︷︷ ︸
cvp

, (8)

where cvp is the (constant) sum of variable protein fractions. We now set ax = vbm/cbm, where vbm is the

biomass production rate (in carbon molar biomass / time) per metabolic enzyme (in carbon molar) and cbm
is the biomass concentration in cells (in carbon molar). The value of ay can be obtained from proteomics

data by a linear regression between growth rate and ribosome fraction. Eventually, we obtain

µ =
1

cbm

vbm
+ 1

ay

· cvp =
cvp · vbm

cbm + 1
ay
vbm

. (9)

This is a hyperbolic function just like the one we derived before. By adjusting this formula to proteomics

data, we would obtain the same parameters as above.

1.4 EFCM provides advantages over common kinetic or constraint-based modeling
methods

By combining full information about kinetics and enzyme costs with a flux optimization approach, EFCM

closes the gap between kinetic and stoichiometry-based models. It provides a clear theoretical link between

kinetic models and existing network-based approaches which have incorporated some of the kinetic infor-

mation. In contrast to these existing methods, EFCM allows for systematic studies of parameter sensitivities

and uncertainties. Due to the screening of EFMs, its numerical effort is much higher. However, after one

single calculation run, gene knockouts can be easily studied without any additional numerical effort. The

main advantages over existing kinetic or constraint-based methods are as follows.

• Advantage over a direct optimization of enzyme levels in kinetic models Our optimization procedure is

equivalent to a direct optimization of enzyme levels, which would often be numerically impossible: imag-

ine that we treat the enzyme levels El in a kinetic model as free variables to be optimized for minimizing

the ratio vBM(E)/Emet(E). This would be computationally costly: the objective function vBM(E)/Emet(E)

may be difficult to evaluate (because this entails solving a kinetic model for its steady state), but is also

likely to be non-convex and non-concave, with potentially many local minima. In EFCM, in contrast, all

calculation steps are computationally tractable for medium-sized models. Another advantage of EFCM

is that fluxes and metabolite constraints (e.g. stationarity, kinetics, thermodynamics, and physiological

bounds) can be imposed easily. Moreover, it is instructive to consider the set of EFMs and to compute the

growth rates even for the non-optimal ones. The rate/yield scatter plots show directly which EFMs become

growth-optimal, under what conditions, and how the optimum flux mode can switch following parameter

7



Figure S2: EFCM can be used to simulate a wide range of enzyme perturbations and their effects on
growth and metabolic strategies (a) From an enzymatic rate law (in this schematic example, a simplified
hypothetical Michaelis-Menten rate law with oxygen as a substrate), we obtain a formula for the enzyme cost
as a function of flux, kcat value, enzyme burden h, and oxygen level [O2]. Changing the latter parameters
will affect the enzyme cost (and therefore the growth rate) of each EFM differently. For example, EFMs
that do not use the perturbed reaction will not be affected and their growth rates remain unchanged (in
this case, these are the anaerobic EFMs). Panels (b-f) show, schematically, the changes in the rate/yield
diagram resulting from different parameter perturbations. In each panel, the EFM with the highest growth
rate is marked by a black frame. The blue and red polygons highlight the Pareto front before and after the
change, respectively. If we lower the oxygen level (b), the growth-maximizing EFM shows a lower growth
rate, but remains optimal. Only at much lower oxygen levels (c), another (oxygen-independent) EFM shows
the highest growth rate. A similar change can be obtained by decreasing the kcat value (d) or increasing
the enzyme cost weight (e). (f) When an enzyme is knocked out, all EFMs that use this reaction become
infeasible and disappear from the plot. The same effect could be reached by an extreme decrease in oxygen
or kcat value, or by an extreme increase in the enzyme cost weight.

8



10−2 10−1 100 101

ideal cost [gr enz / gr dw h−1]

10−2

10−1

100

101

a
ct

u
a

l
co

st
[g

r
en

z
/

g
r

d
w

h
−

1
]

y = 1.4 x

y = 4.7 x

min. ideal
cost = 0.039 [h−1]

min. actual
cost = 0.083 [h−1]

Figure S3: Two estimates of the total enzyme cost. The total enzyme cost, as computed by EFCM, can be
approximated by assuming that all enzyme molecules work at their full capacity (i.e. full substrate saturation,
no reverse fluxes, no product saturation). This simplification leads to the “ideal”, capacity-based enzyme cost
qcat =

∑
i(|vi| ·wi)/kcat,i [7]. Since qcat yields a lower bound on the enzyme demand as calculated by EFCM

(“actual cost”, on the y-axis), all points in the plot must lie above the y = x line (black). Actually, we find
that all points lie even above the y = 1.4x line (red), so the actual cost for our model in standard conditions
(also for non-elementary flows) is at least 1.4 times higher than the ideal cost. Interestingly, the actual cost
is also bounded from above by the y = 4.7x line (blue). The two minimal-cost EFMs (i.e. the EFM with the
lowest ideal cost and the EFM with the lowest actual cost) are indicated with arrows. Since the ideal cost
can be calculated easily as a linear function of the flux, it can be used as an approximation of the actual cost
in certain applications, e.g. to quickly discard EFMs that would lead to very low growth rates.

changes, including variable external conditions, changing enzyme parameters or cost weights, and enzyme

knockouts (see Figure S2).

• Advantage over constraint-based methods with linear flux cost functions EFCM predicts metabolic

fluxes and enzyme profiles ab initio, i.e. without requiring any conditions-specific measurements such as

proteome or gene transcription data. Nevertheless, our calculations of growth rates rely on a large number

of kinetic constants, and uncertainties in these parameters will introduce uncertainties into all our predic-

tions. However, methods with fewer unknown parameters all have their own drawbacks. Stoichiometry-

based methods (e.g. FBA without any additional flux constraints) do not require such parameters, but

would not be able to address rate/yield trade-offs because their model assumptions force growth rates

and yields to be proportional (see Figure S14). Our method can be compared to variants of Flux Balance

Analysis that employ flux cost functions to mimic enzyme cost. For example, the total enzyme demand

Etot =
∑
lEl of a pathway or network can be approximated by Etot ≈ Elb =

∑
l

vl
kcat,l

, which puts a lower

bound1 on the true value of Etot. In EFCM, we could use this linear function Elb(v) instead of the true

enzyme cost derived from ECM2. However, the approximation would not only yield unrealistically low
1A similar idea underlies FBA with molecular crowding. In this method, the enzyme demand is not used as an objective to be

minimized, but as a variable to be constrained during optimization. Fluxes are constrained by a bound vl ≤ vmax
l = El kcat,l on

every reaction flux. An upper limit on the sum of enzyme levels Etot,max ≥ Etot =
∑

l El represents the limited space available for
enzymes.

2The resulting method would be equivalent to a flux balance analysis with fixed biomass production rate, no other flux constraints,
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predictions of enzyme costs, but would do so to different extents across EFMs (see Figure S3). This would

distort the prediction of growth-optimizing metabolic strategies.

1.5 A kinetic description of enzyme capacity utilization

Recent FBA methods, such as FBA with flux minimization [8], molecular crowding [9], or constrained al-

locations [10] address rate/yield trade-offs by bounding or minimizing the presumable enzyme demand.

Such methods can predict low-yield flux modes, but they ignore the complex kinetic dependencies between

reactions due to shared metabolites. As suggested by our EFCM results, enzymes may work below their

maximal rates not because they are deliberately left unused, but because of the fact that enzymes require

high substrate and low product levels inorder to be thermodynamically and kinetically efficient. This causes

contradicting requirements in different reactions. Even in the best possible compromise, many enzymes will

not be efficiently used. The assumption that some (or all) enzymes always operate at their maximal capac-

ity would lead to an overestimation of growth rates. The difference between actual and predicted enzyme

levels reflects, among other things, the fact that in each given moment, some enzyme molecules will not be

processing a substrate molecule. In [11], these enzymes were called “unused enzyme fraction”. As pointed

out in the main text, we think that this term is misleading.

Nevertheless, to simplify EFCM, one could assume that enzymes work at a constant capacity utilization:

in this case, fluxes and enzyme levels would not be related by rate laws, but by simple proportionality

factors. For example, if we assumingd that all enzymes work at their maximal speed (as given by their kcat

values), the optimization of metabolite concentrations with respect to the total enyzme cost would become

obsolete: using the enzyme molecular masses and kcat values, we could directly translate any flux mode

into a total required amount of enzyme by a simple linear formula, which does not depend on metabolite

concentrations. This simplified version is used by satFBA [12], with the addition that the cost weights of the

transport reactions can be varied to reflect differential saturation of the transporter enzymes, which allows

for the investigation of changing external conditions (similar to our Figures S14(a-b) and S15).

In a previous article [7], we showed that the assumption of fully efficient enzymes yields inferior predictions

for enzyme concentrations, and as expected, the growth rate prediction is harmed as well. The growth rate

would be overestimated by a factor of about 2.4 (see Figure S3) and, more severely, the growth differences

between EFMs would be distorted. This overestimation is purely an artifact and has no biological inter-

pretation. Given the overestimation of the growth rate, it seems quite surprising that these methods can

predict metabolic states quite effectively (e.g. [13]). In the case of Resource Balance Analysis (RBA) [14],

the overestimation of growth rates is avoided by using experimentally measured apparent kcat values, which

are lower than the actual kcat values and capture the fact that enzymes work below their full efficiency. In

RBA simulations, where growth rate is a simulation parameter, different apparent kcat values are chosen for

different growth rates, reflecting the fact that enzyme efficiencies depend on metabolite levels [7], which

vary between growth rates.

1.6 Extending EFCM to larger models and multiple enzyme cost functions

When extending EFCM to larger networks, one needs to address two main challenges: the numerical effort

and data availability. Since the ECM problem for each EFM is convex, it may remain solvable even for large

networks (as noted by e.g. [15]), but the EFMs of large networks would greatly increase in number. A

subsampling of EFMs [16] could be problematic because, depending on model conditions, the high-growth

EFMs may easily be missed (see section 3.1). A promising avenue is to subdivide large networks by defining

and a minimization of a weighted sum of fluxes, namely Elb(v).
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some key metabolites to be external [17] and controlling their concentrations. The resulting subnetworks

can be analyzed independently [18], and their EFMs can be combined to yield favorable flux distributions.

In any case, the second problem remains: when extending the network to more peripheral pathways, these

pathways will be poorly covered with kinetic data, and the uncertainties about model parameters will in-

crease. Such uncertainties may have a strong effect on the predictions, suggesting that simpler models that

require fewer parameters would be preferable. Indeed, focusing only on core metabolism and lumping to-

gether some enzymatic complexes into single steps (such as the phosphotransferase system and the electron

transport chain) was a deliberate decision that we took to reduce this parameter space. Possibly, our model

could be further simplified without greatly affecting the results.

As another extension of EFCM, one could account for multiple cost functions. In our calculations, enzyme

profiles were scored by total enzyme mass as a single cost. In a previous publication, EFMs had been scored

by multiple cost terms describing different investments in enzyme production [19]. For each EFM, the

required enzymes were scored by five different cost values: the investments in atomic carbon, nitrogen, and

sulfur, the total protein chain length, and the total length of the DNA coding for these enzymes, and Pareto

optimality was used to assess trade-offs between these costs. However, this previous work assessed only the

qualitative proteome (i.e. the set of enzymes required for a given EFM), and not the quantitative enzyme

levels. Building on [19], EFCM could be easily extended to incorporate multiple enzyme cost functions to be

studied by Pareto optimality.

2 Model description

This section provides details about our E. coli model: its network structure, the choice of kinetic equations

and enzyme parameters, the usage of physical units and the practical calculation of growth rates, the choice

of external conditions, and some statistics about elementary flux modes.

2.1 Network structure

The network structure of our E. coli model (see Figure S4 and Table S2) is based on the model by Carlson

(2004) [20]. For a kinetic model, we decided to split some linear chains of reactions, since each reaction

in the chain might have different kinetics. Therefore, we changed several details of the model: we split

the lumped reactions R7r, R10, R54r and R55r into separate reaction steps, we added the Entner-Doudoroff

pathway (reactions R60 and R61r) and merged some reactions (the new reactions R27 and R27b) (see Table

S3). We kept the ethanol (R90) and CO2 (R97r) export in the model, but did not consider it in the kinetic

calculation of enzyme cost because this is a passive, non-catalyzed process. Finally, we set the internal

concentrations of CO2 and ethanol to 1 mM, which we assumed to be sufficient to allow for an export

flux through diffusion. The stoichiometric coefficients for the biomass reaction (R70) were taken from the

original model (Table II in [20] for a doubling time of 30 minutes). We added the measured maintenance

flux to the ATP stoichiometry in the biomass equation, which changed the stoichiometry constant for ATP to -

1641. An SBML version of the model is provided in the Supplementary Files. The EFMs were calculated with

EFMtool [21]. We scaled all EFMs to a standard biomass production of 1. The model contains a total of 2772

EFMs, out of which 1566 produce biomass. 760 of the biomass-producing EFMs are not feasible because they

both need oxygen and use an oxygen sensitive reaction, 97 are facultatively aerobic, 470 are strictly aerobic,

and 239 are strictly anaerobic (see Figure 2(b)). To avoid biases in our growth predictions, we considered all

EFMs that have a non-zero biomass yield, even those that contain physiologically unreasonable fluxes. For

example, the futile cycling between PEP and pyruvate (by the combined activity of pyruvate kinase (pyk)
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Figure S4: The reaction network of core carbon metabolism in E. coli.

and pyruvate water dikinase (pps)) wastes ATP and can be expected to be suppressed by strict enzyme

regulation [22]. Such EFMs were consistently predicted to cause low growth rates and had no effect on the

outcomes of our study. Some statistics about the biomass-producing EFMs can be found in Figure S7.

2.2 Kinetic equations

We used the same type of rate equations for all reactions [3]. Reversible reactions are marked by an “r” after

the reaction number (see Table S2). Reversible (vr) and irreversible (vi) reactions are modeled as follows:

12



10−3 10−2 10−1 100 101 102 103

kcat of biomass reaction [s−1]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

g
ro

w
th

ra
te

[h
−

1
]

default kcat

max-gr
pareto
max-yield
ana-lac
aero-ace
exp

Figure S5: Growth rates of the focal EFMs,
depending on the kcat value of the biomass
reaction (R70). In all cases, growth rates in-
crease with the maximal velocity of the biomass
reaction. Since kinetics and enyzme demands
of the biomass reaction are hard to determine,
we chose a high kcat value (dotted line) as a
standard parameter. With this value, the en-
zyme cost of the biomass reaction is negligible
and the maximal growth rates are determined by
metabolism (and different between EFMs) rather
than by biomass production itself. The negli-
gible enzyme cost agrees with our definition of
“metabolic enzymes within the proteome” which
excludes all proteins involved in macromolecule
production.

vr = er · kcat,r

∏
j

(
sj

KM,sj,r

)nj
(

1−
∏

k p
nk
k /

∏
j s

nj
j

Keq,r

)
∏
j

(
1 +

sj
KM,sj,r

)nj

+
∏
k

(
1 + pk

KM,pk,r

)nk

− 1
(10)

vi = ei · kcat,i

∏
j

(
sj

KM,sj,i

)nj

∏
j

(
1 +

sj
KM,sj,i

)nj

+
∏
k

(
1 + pk

KM,pk,i

)nk

− 1
, (11)

with enzyme concentration ei, substrate concentrations sj , product concentrations pk, and (absolute value

of the) stoichiometric coefficient n. The KM values are the Michaelis-Menten constants, the kcat values the

turnover numbers, and the Keq values the equilibrium constants. In our model, macromolecule production

is quantified by a single biomass production rate vBM . The biomass reaction is a lumped reaction of all

processes involved in biomass production, and its rate law represents the action of many (not explicitly

modeled) cellular processes operating in steady state [23]:

vbiom =
ebiom · kbiom

cat,

1 +
∑
j

Kbiom
M,sj,

sj

(12)

Equation (12) corresponds to the equation given in [23] with a single unit in the template (n = 1) and

ebiom as the template concentration. The sj are the substrate levels of the biomass reaction and KM,sj ,biom

their Michaelis-Menten constants. Since this reaction is a lumped reaction that summarizes a wide range of

biosynthetic reactions, its catalytic constant does not have a direct biochemical meaning. We thus opted not

to give too much cost weight to the biomass production and chose a kcat value that does not affect the rate

very much (see Figure S5 and compare with Figure S20). With the catalytic constant chosen, the kinetics

of the biomass reaction does not limit growth, i.e. growth control is only exerted by the other, metabolic

reactions.
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2.3 Choice of consistent model parameters by parameter balancing

Parameter balancing [1] was used to translate measured kinetic constants from the literature into a complete

and consistent set of model parameters (kcat, Keq, and KM values). Unknown kcat values, for example, were

substituted by values around 100 s−1, adjusted to satisfy Haldane relationships, i.e. the thermodynamics-

based laws that link them to KM values and equilibrium constants. Plausible parameter ranges were used

to define prior distributions (e.g. a mean value and a standard deviation for logarithmic kcat values). The

median value of 100 s−1 was chosen because kcat values in core metabolism tend to be higher than in

metabolism in general (typical value around 10 s−1) [24]. The input and output files of parameter balancing

can be found in the Supplementary Files. The kinetic input data were obtained from the literature (see

Supplementary Files). Some kcat values were calculated from specific activities (SA) with the formula kcat =

SA ·MW(in kDalton)/(60 · nrcatalyticsites). The weights were obtained by calculating the molecular masses

for enzyme complexes and dividing by the number of catalytic sites. Whenever the number of catalytic

sites was not known, we used the number of subunits as a proxy for the number of catalytic sites. Since

no kinetic information was available for the biomass equation, we set the KM values to the measured

intracellular concentrations when available, and otherwise to a low value as not to influence the results (see

Supplementary Files). Overall, we found literature values for the kcat of 26 out of 51 reactions, and KM

values for 87 out of the 171 reactant-enzyme pairs (i.e. about 50% coverage in both cases). The parameter

values after balancing, which are used in the paper, can be found in Tables S5 (kcat values), S6 (KM values)

and S7 (Keq values).

2.4 Calculation of specific growth rate and yield

To calculate the cell growth rate µ (using formulae from Equations (4.6)–(7)), we first translate the biomass

flux to actual mass units (e.g. grams) by summing up the molecular masses of the biomass reactants, multi-

plied by their stoichiometric coefficient. The ATP/ADP and NADH/NAD+ cofactor pairs are ignored in this

calculation because they produce a negligible amount of biomass. That means that one mole of biomass

weighs about 20.7 kg. Details of the mass calculation of the biomass are given in Table S4. Then, we convert

the biomass flux vR70 in the model to the biomass production rate vBM in the growth equations:

vBM = vR70 [mM s−1] · 2.07× 104 [mg mmol−1] · 3.6× 103 [s h−1]

= vR70 · 7.45× 107 [mg s mmol−1 h−1]. (13)

Our model calculates the abundance of each enzyme (ei, in mM) required for realizing this biomass flux. To

obtain the total enzyme mass required, we multiply each ei by the enzyme’s molecular mass per active site

(wi, given in [mg mmol−1]). Therefore, the total enzyme cost will be Emet =
∑
i eiwi [mg l−1]. Finally, the

enzyme doubling time is given by

τmet =
ln(2)Emet

vBM
(14)

= v−1
R70 · 9.3× 10−9[mmol h mg−1 s−1] · Emet.

According to Equation (7), the doubling time of the cell reads

T = 7.4 τmet + 0.51[h] (15)

=
1

vR70
· 6.9× 10−8 [mg s mmol−1 h−1] · Emet + 0.51[h].
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From Equations (4.6), (4) and (13), the growth rate µ can be calculated from total enzyme cost Emet and

from biomass flux vR70 with the following formula:

µ =
vR70 · 107 [mg s mmol−1 h−1]

Emet + vR70 · 7.5× 106 [mg s mmol−1]
. (16)

The biomass yield is expressed in milligram biomass per millimole of carbon atoms uptake. Therefore, we

need to convert biomass production to grams and substrate uptake rates to mole carbons. Since glucose

molecules contain six carbon atoms, and a mole of biomass weighs 20666 grams (see Table S4), the biomass

yield is given by

Yg/C =
20666 [mg mmol−1] vR70

6 · vpts

=
vR70

vpts
· 3.4× 103 [mg mmol−1], (17)

where vpts is the flux in the PTS glucose uptake system (reaction R1 in the model).

2.5 Absolute values for enzyme concentrations

Our model predicts enzyme concentrations abundances in mM, but initially these values are not properly

scaled. To make all EFMs comparable, we fix the biomass production rate vR70 at a standard value of

1 [mM s−1]. Thus, before comparing the predicted enzyme levels with data, we need to compute our hidden

scaling factor, the absolute value of vBM. An average bacterial cell consists of about 30% dry matter [25],

which translates to a dry density of ρ ≈ 3 × 105 [mg l−1]. A typical value for the growth rate would be

µ ≈ 1 [h−1], which would be enough to for a rough estimate of the biomass rate, given by vBM = ρ ·µ. Using

equation (13) we now obtain

vR70 =
vBM [mg l−1 h−1]

7.45 · 107 [mg s mmol−1 h−1]

=
ρ [mg l−1] · µ [h−1]

7.45 · 107 [mg s mmol−1 h−1]

≈ 4× 10−3 [mM s−1] . (18)

This result means that our standard value for vR70 is ∼250 times too high, and so are the nominal estimates

for enzyme concentrations. To obtain realistic estimated values, one must therefore divide each ei by 250.

It is important to note that a wrong scaling of vR70 and ei does not affect the predictions about growth

rate and yield. One can see that in formulae (2.4) and (2.4) this scaling factor affects both the numerators

and the denominators and therefore cancels out. This is not a coincidence, but a feature of the way we

calculate growth rate, namely by dividing the rate of biomass production by the required enzyme amount

for that specific rate. As an outcome of this independence, one can also use the predicted growth rate

directly in equation (18) instead of the unit value (1 [h−1]), even though the value of vR70 and the enzyme

concentrations were used to calculate the growth rate in the first place.

2.6 Choice of standard external conditions

As a standard condition for our simulated cells, we chose a high external glucose concentration of 100 mM.

For oxygen we chose the concentration from the same paper as we used for the kinetics of the oxygen-using

15



reactions [26], namely 0.21 mM. The concentration of ammonia (NH3), another external compound taken

up, was set to 10 times more than the highest KM to ensure saturation (1.0 mM). The levels of excreted

metabolites were assumed to be low and were set to 0.01 mM, except for ethanol and CO2 which were set

to 1 mM (which are actually internal metabolites, since we treat the export reactions as non-enzymatic).

2.7 Details on the elementary flux modes

Some biological and statistical properties of the EFMs are shown in Figures S6, S7, S8, and S9.
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Figure S6: Elementary flux modes, visualized using the t-SNE algorithm. (a) Elementary flux modes are
vectors in a high-dimensional flux space. The t-SNE algorithm [27] represents EFMs by points on a two-
dimensional plane. It tries to preserve their original distances (i.e. the Euclidean distances in flux space)
while spreading the points evenly over the plane. The biomass yield (b) and specific growth rate (c) are
represented by a color scale. As expected, similar EFMs have very similar yields (since the yield is one of the
dimensions in the flux space), but growth rates can significantly change between neighboring EFMs. In each
of the panels (d-i) we show a single feature in color coding, all on the same EFM map. The t-SNE algorithm
produces clusters of EFMs related to major uptake and secretion fluxes. Interestingly, all high-growth EFMs
are contained in a single cluster (see (c)), even though t-SNE uses no information about enzyme kinetics or
our standard growth conditions.
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Figure S7: Statistical properties of biomass-producing EFMs and correspondance between EFMs and
the measured fluxes (a) Usage of individual reactions by biomass-producing EFMs. For each reaction, a
bar shows in what percentage of all EFMs this reaction is active. A core of 8 essential reactions is active
in all biomass-producing EFMs (ppc, ex-nh3, icd, csn, acn, biomass, pts, and rpi). (b) Size distribution
of biomass-producing EFMs (number of active reactions). (c) Similarity between EFMs and the measured
flux distribution. The color of each EFM in this rate/yield plot corresponds to the Spearman correlation
between the fluxes in that EFM and the experimentally measured fluxes from [28]. (d) Similarly, we plot
the Spearman correlation between the estimated enzyme levels for each EFM and the measured enzyme
levels from [29]. Note that even the point corresponding to exp does not have a correlation of 1, since, even
though the fluxes are taken from experiments, the estimated enzyme abundances are still given by the ECM
algorithm. Nevertheless, exp is among the EFMs with the highest correlations.
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Figure S8: Reaction fluxes in different EFMs. Fluxes are plotted in a rate/yield diagram under standard
conditions. More fluxes are given in main text Figure 3. (a) Succinate:fumerate cycling is not very beneficial
and occurs only in suboptimal EFMs. (b) Ammonia uptake is strongly correlated with yield because ammonia
directly enters the biomass reaction. (c) The ED pathway is consistently used by a group of low yield/high
growth rate EFMs, but also in other parts of the spectrum. (d) The pentose phosphate pathway is also used
throughout, but more in the higher-growth-rate EFMs. (e) The flux in upper glycolysis is reversible and
therefore depicted using a red-blue colormap. It is zero for the seven EFMs with the highest growth rate and
otherwise usually positive. Only a few EFMs with medium-low growth rates use the reverse direction. (f)
The flux through pyruvate dehydrogenase, a large (and therefore costly) enzyme complex, is relatively low
for the fastest EFMs.
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Figure S9: Correlations of
biomass yield with acetate
flux, oxygen flux, number of
reactions, and flux sum All five
quantities follow from the shapes
of EFMs, independently of enzyme
kinetics. (a) Acetate secretion,
scaled by glucose uptake. Among
the acetate-secreting EFMs, higher
acetate secretion tends to imply
lower biomass yields. (b) An
oxygen uptake around 0.4 [mol O2

per mol C glucose] maximizes the
yield: a lower O2 uptake implies
higher by-product secretion (to
make up for the ATP requirements),
while at higher uptake rates, more
carbon is oxidized and released as
CO2. (c) The number of active reac-
tions, a simple measure of enzyme
demand, shows little correlation
with biomass yield. (d) The same
holds for the sum of fluxes, scaled
by the glucose uptake rate.
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3 Model results

This section provides additional results on the predicted growth rates for different EFMs, under different

external conditions (variation of glucose and oxygen levels), different choice of kinetic constants, a restricted

usage of pathways, and enzyme knockouts. It also provides results on the necessary enzyme investments

(for different EFMs, and under varying external conditions) and on the optimal metabolic strategies in

chemostats at different growth rates (as determined from predicted Monod curve parameters).

3.1 Growth rates achieved by elementary flux modes

As shown in Figure S10, the predicted cell growth rates do not only vary widely across EFMs, but also show

statistical distribution that assume very different shapes depending on biochemical external conditions. At

standard (high oxygen) conditions, growth rates are relatively evenly distributed, while under low-oxygen

conditions, a large number of EFMs (the oxygen-dependent ones) show very low growth rates, and only a

very small percentage comes close to the maximal growth rate. This has practical consequences for modeling:

since the number of EFMs can be large, it might be tempting to sample EFMs instead of enumerating them

exhaustively, in the hope to find at least some EFMs with high growth rates. However, this approach would

have failed in the low-oxygen case, because almost all EFMs yield very unfavorable growth rates. In this

specific example, we might try to sample EFMs in such a way that oxygen-dependent EFMs are automatically

discarded. However, in general cases, such heuristics may be hard to find. We conclude that a sampling of

EFMs may yield some well-performing EFMs (as here, in high-oxygen conditions), but it may also fail (as

here, in low-oxygen conditions).
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Figure S10: Distribution of growth rates over EFMs. (a) Under standard conditions, the growth rates
are relatively evenly distributed, and a randomly sampling of EFMs is likely to yield some EFMs with high
growth rates. (b) Under low-oxygen conditions, in contrast, the distribution is strongly skewed to the left.
The chances of finding an EFM with a high growth rate (i.e. > 0.2 [h−1]) by chance are very small.

3.2 Effect of individual enzyme parameters on cell growth

If we decrease the catalytic constant of an enzyme, all EFMs using this enzyme will show lower growth rates

because the lower catalytic efficiency must be compensated by higher enzyme levels to maintain the flux

in the EFM (see proof in SI section 4.5); as a consequence, the biomass production per enzyme investment

decreases, and so does the growth rate. Figure S20 shows the effects of a simulated change in the catalytic
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Figure S11: Capacity utilization of enzymes in aerobic and anaerobic conditions. (a) Capacity utiliza-
tion in standard (high-oxygen) conditions. The box plot shows, for each enzyme, the range of capacity
utilization values across EFMs. The capacity utilization is defined as the actual flux, divided by the “ideal”
flux achievable under conditions of full substrate saturation and maximal thermodynamic driving force. The
inter-quartile ranges (box sizes) are relatively small, showing that most enzymes have their typical capacity
utilization values. These typical values, however, span almost the entire range between 0 and 1. In the
plot, enzymes are sorted by their median values. Box colors correspond to other plots in this paper. Red
dots denote the calculated capacity utilization for measured wild-type fluxes. (b) Capacity utilization for
anaerobic conditions. The values for individual enzymes differ substantially from the values in (a).

constant of tpi, the triose-phosphate isomerase. Compared to standard conditions (light grey dots, same as

in main text Figure 2(b)), the Pareto front now contains a few EFMs with similar yields, but very different

growth rates. The growth rate of max-yield, which uses tpi, is greatly reduced, while the max-gr EFM is

not affected since it has no flux through tpi at all. The sensitivities shown in Figure S20 (b) correspond

to the curve slopes in Figure S20 (c) at the standard kcat value. The grey shading marks the range of a

two-fold increase or decrease around the standard kcat. One can see that the linear approximation is not

suitable for much larger changes in kcat, such as the change shown in panel (a) (i.e. a 1000-fold decrease

to “low kcat”). The curves in Figure S20(c) are based on a global enzyme re-optimization after parameter

changes. Therefore, if we focus on small parameter changes (which allow us to ignore effects higher than

first order), the parameter sensitivities can be easily computed. The calculation of sensitivities for kcat values,
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Figure S12: The effect of a lower glu-
cose level on growth. A drop in glucose
level (from 100 mM to 0.1 mM) decreases
the growth rates of all EFMs, but to dif-
ferent extents. EFMs with low yields are
more strongly affected (ana-lac, for exam-
ple), since the relative glucose uptake rate,
and therefore the enzyme burden of the
PTS system, is larger. However, the Pareto
front changes only slightly, and still con-
sists of a few EFMs (Pareto optimal EFMs
are marked by dark triangles).

equilbrium constants, and KM values from previously computed optimal enzyme profile for an EFM under

standard conditions is described in SI sections 4.2 and 4.3.

3.3 Monod curves and optimal EFMs under high-glucose or low-glucose conditions

In a glucose-limited chemostat, different dilution rates will lead to different cell densities and external glu-

cose concentrations. Can we expect that cells use the same metabolic strategies in a wide range of growth

rates, or with some strategies perform better at low growth rates and others perform better at high growth

rates? Since our model uses glucose concentration as a parameter, EFCM can be used to answer such ques-

tions; whereas methods like classical FBA, in which all fluxes scale linearly with the glucose uptake flux,

would not be applicable (see Figure S14). To study trade-offs between growth at low and high glucose lev-

els, we first calculated a Monod curve for each individual EFM, assuming a wide range of external glucose

concentrations. The Monod curve is typically characterized by the formula µ = µmax [S]h

[S]h+Kh
S

, where µmax

is the maximal growth rate, [S] is the concentration of the limiting nutrient (i.e. glucose) and KS is the

substrate saturation constant (or “Monod coefficient”). The Monod coefficient denotes the concentration of

glucose at which the half-maximal growth rate is reached (µ = 1
2µ

max), and its reciprocal value can be seen

as the cell’s overall affinity for glucose. In a chemostat at high dilution rates, cells must grow fast because

they can only survive if their maximal growth rate exceeds the dilution rate. At low dilution rates, in con-

trast, the higher cell density leads to very low glucose levels; in this case, there is a selection for cells that

can grow fast at low glucose levels, typically cells with a low Monod constant.

Having computed the growth rates of all EFMs in a wide range of glucose concentrations, either in aerobic or

anaerobic conditions, we determined the curve parameters for each EFM (Monod coefficient and maximal

growth rate) by fitting the growth curve with a Hill function. Plotting µmax versus the affinity 1/KS and

under aerobic conditions, we do find a trade-off (Figure S19(a)), and under anaerobic conditions, the trade-

off develops becomes more pronounced (Figure S19(e)). In fact, the growth at low glucose concentration

depends both on the Monod constant and on the maximal growth rate; as shown in Figure S19(i), our
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Figure S13: Cell growth rate as a function of external glucose and oxygen levels. For each combination of
glucose and oxygen levels, maximal growth is realized by one optimal EFM (marked by colors). (a) 23 of the
EFMs turn out to be optimal (i.e. have the highest growth rate) at least in some region of the glucose/oxygen
plane. (b) Despite the complicated pattern of “winning” EFMs, the optimal growth rate changes smoothly
with the glucose and oxygen levels. It is difficult to see any transitions except for one boundary that curves
up around the lower right corner. In a chemostat experiment, an imposed growth rate could be realized
by various combinations of external glucose and oxygen levels. Which of these combinations arises in the
medium depends on the ratio of glucose and oxygen supplies to the chemostat. By plotting different EFM
properties (c-h) of the optimal EFMs in this plane, we can see that only anaerobic EFMs are optimal in the
low oxygen/high glucose region (d). Interestingly, acetate fermentation is only favorable in a narrow band
around this anaerobic region and becomes unfavorable at higher O2 levels (e).

simulations predict almost no trade-off as long as oxygen levels are high. In anaerobic conditions (Figure

S19(m)), the trade-off becomes more pronounced, suggesting that the winning strategies depend on the

dilution rate.
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Figure S14: Optimal EFMs depending on glucose and oxygen concentrations or uptake rates. (a) The
optimal EFMs across the glucose/oxygen plane (same figure as S13(a)). (b) The optimal EFM colors overlaid
on a 3D surface plot, where height represents the optimal growth rate reached. (c) By changing the axes
in panel (a) to the glucose and oxygen uptake rates, we obtain a very different picture. Due to our model
assumptions, only EFMs can maximize the growth rate at a given condition, and since each EFM defines a
constant ratio of glucose to oxygen uptake, its points are all positioned along a straight line (scaled by the
growth rate). Therefore, this scatter plot is very sparse. (d) the same data as in (c), shown as a 3D plot
where the z-axis is growth rate. Again, the points of each EFM are aligned since all rates scale linearly with
the growth rate.

3.4 Growth of strains deficient in EMP glycolysis, ED glycolysis, or respiration

Our analysis of growth-yield trade-offs extends an earlier study of cost/yield trade-offs in ATP production.

Flamholz et al. had studied cost-yield trade-offs between two variants of glycolysis, the Embden-Meyerhof-

Parnas (EMP) and the Entner-Doudoroff (ED) pathway [30]. Their model comprised only glycolysis, and

ATP yield and enzyme cost were compared between the two pathway variants at a fixed glucose uptake

rate. The EMP pathway provides a two-fold yield, but requires even higher amounts of protein per ATP

production flux. This leads to a cost-yield trade-off. The authors concluded that, under a high demand for

ATP produced in glycolysis, cells should use the EMP pathway, while cells that have other “cheap” sources of

ATP (e.g. photosynthesis) should rather use the ED pathway.

With our model, we can now study the choice between pathways more generally. Compared to the glycolysis

model in [30], our model has the following additional features: (i) the model includes the TCA cycle and

respiration, so choices between fermentation and respiration and choices between EMP and ED pathways
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Figure S15: Monod curves and residual glucose levels in chemostats. All panels show predicted growth
rates as functions of the external glucose level. The graphics in the first row refer to anaerobic conditions
(vanishing oxygen level). The graphics in the other two rows show results for simulations with low (11.5
µM) and standard (0.21 mM) oxygen levels. (a) Growth rates of all anaerobic EFMs as functions of external
glucose levels (curves extrapolated using a cubic function, 80 simulated points). (b) Highlighting the 5 EFMs
that are optimal in at least one glucose concentration. The thick line follows the growth rate of the winning
EFM and represents a predicted, kinetically justified Monod curve. (c) Predicted residual glucose level in
chemostats as a function of cell growth rate. The curve is obtained from the thick curve in (b) by swapping
the axes. Note that the glucose level is now shown on non-logarithmic scale, which changes the curve shape.

can be studied in combination. (ii) Our model predicts biomass yield and cell growth rate (instead of ATP

yield and enzyme cost in glycolysis) as output variables. (iii) We screen the behavior for various glucose

and oxygen levels, each providing different enzyme costs and growth-yield trade-offs. To assess the utility

of EMP glycolysis, ED glycolysis, and respiration, we studied model variants in which these pathways were

individually blocked. If a pathway is blocked, it may still be by-passed by other pathways, but if these

pathways are less efficient the growth rate decreases. The quantitative decrease may depend, again, on the

(glucose and oxygen) conditions. Here we compare our simulated wild-type E. coli (capable of using EMP
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Figure S16: Rate/yield trade-offs under different glucose and oxygen conditions. The scatter plots show
growth rate and biomass yield of all EFMs under standard conditions (a), low oxygen conditions (b), low
glucose conditions (c), no oxygen (d). Lower glucose and oxygen levels lead to lower growth rates in many
of the EFMs. Other EFMs may become optimal, and a wide Pareto front consisting of diverse EFMs may
emerge, such as in panel (b).

glycolysis, ED glycolysis, and respiration) to variants in which one of the three pathways was blocked by a

simulated gene deletion (see Figure 6 in main article).

Blocking either the EMP or ED pathway had the most marked effects at low oxygen levels, where respiration

is not used and cells rely entirely on glycolysis for their ATP production. Blocking respiration had almost the

same effect as setting the external oxygen concentration to very low values (except for the case of extremly

low glucose concentrations). This analysis does not require any additional optimization runs. We just need

to analyse the existing simulation results while discarding some EFMs, i.e. those that contain a blocked

pathway. Note that our three model variants can also be seen as simple models of bacterial species that lack

the genes for EMP glycolysis, ED glycolysis, or respiration.

In [30], it was hypothesized that non-respiring cells, which completely depend on ATP generated in glycol-

ysis, should employ the high-yield EMP pathway despite it higher enzyme cost. Here we find the opposite:

at (low oxygen and) high glucose levels, EMP and ED pathways yield approximately the same growth rates,

and at low-to-medium glucose levels, the ED pathway performs even better, possibly due to ATP cost/yield

ratio, which is still better than the cost/yield ratio of the EMP pathway – a conclusion that is in line with the

simulation results, but not with the verbal conclusions, in [30].
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Figure S17: Relative protein costs for selected EFMs (in standard conditions). The reactions with the
highest enzyme demand are: oxidative phosphorylation (R80), citrate synthase (R21), glucose uptake PTS
system (R1) and glyceraldehyde-3P dehydrogenase (R7ra).

3.5 Epistatic effects between enzyme knockouts

Once growth rates and yields have been computed for all EFMs, simulating single, double, or multiple gene

knockouts is really easy – we just need to exclude all EFMs that are affected by a knockout and redo the

statistical analysis (e.g. finding the growth-maximising EFM, or determining the Pareto front). By comparing
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Figure S18: Protein cost depending on varying glucose and oxygen levels. The wto left columns show
enzyme cost in absolute concentration (left) or as a fraction of the total cost (right) at varying glucose
concentrations. Enzymes that require more than 5% of the total cost are shown in color; the enzyme cost of
all other reactions, as a sum, is shown in the grey area denoted “other”. Only the six focal EFMs are shown.
The two right columns show enzyme costs for varying oxygen concentration.

the performance of simulated single and double knockout strains, we can compute epistasis values. Epistasis

describes whether a double knockout has a less severe or more severe effect than we would have expected

based on the separate single knockouts, and can be defined based on growth rate or yield as the fitness

objective.
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Figure S19: Growth rates under high-glucose or low-glucose conditions. The upper two rows (panels
(a)-(h)) show scatter plots between the maximal growth rate at standard conditions (y-axis) and the inverse
Monod coefficient. Likewise, the lower two rows (panels (i)-(p)) show scatter plots between the maximal
growth rate at standard conditions (y-axis) and at very low glucose levels (1 µM). Odd rows show the
distribution of all EFMs in aerobic conditions ([O2] = 0.21 mM) and even rows show anaerobic conditions
(only EFMs that do not consume O2 are shown). The first column (left) displays all EFMs, and the three other
columns show oxygen uptake, biomass yield and acetate secretion rate, respectively. In aerobic conditions
there is almost no trade-off between the maximal growth rates at ligh or low glucose concentrations. This
means that high-glucose conditions and low-glucose conditions often favor the same EFMs.

Figure S22 shows predicted epistasis values for growth rate as the selection objective. We find the same

lethal knockouts as the yield (compare Figure S23). However, for growth rate there are fewer cases of

positive epistatic interactions. After a knockout in lower glycosis (R7-R8), a second knockout in the pentose

phosphate pathway (PPP, R11-R15) gives an extra reduction in growth rate (no positive scaled epistasis),

while it does not have a big effect on the yield. There is a positive epistasis in the growth rate for the

two reactions in the ED pathway (R60 and R61r), while this pathway is not used in high-yield pathways

(and therefore no epistasis there). Some of the epistatic interactions for yield reappear at low oxygen

levels, because high-yield pathways tend to provide high growth rates at low oxygen levels (panel (d)). It

is interesting that some epistatic interactions change signs between different conditions, such as the positive
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Figure S20: Effects of a varying enzyme parameter on growth. (a) Change in the rate/yield spectrum.
We decreased the catalytic constant of triose-phosphate isomerase (tpi) by a factor of 1000 (from its original
value 7800 s−1 to 7.8 s−1). (b) Sensitivity of the growth rate to the kcat value of tpi for all different EFMs.
Error bars depict the change in growth rate caused by a 50% increase or decrease in the kcat value. To
compute the sensitivities, we used a formula that assumes a direct compensation of the affected enzyme (see
SI section 4.3). (c) Effect of a variable kcat value of tpi (x-axis) on the growth rates of selected EFMs. The
50% range around the standard kcat value is marked by grey shading. The top two EFMs max-gr and pareto
do not use tpi at all and are thus insensitive to changes in its kcat.

epistasis between uptake (R1) with the ED pathway (R60 and R61r) (panels (b) and (f)) which turns

negative at low oxygen levels (panel (d)).

The epistatic effects on yield are shown in Figure S23. Panel (a) shows the relative yields of double knockouts

as a fraction of the maximal yield (i.e. the yield of the wild-type). Single knockouts are shown on the

diagonal. Obviously, the uptake reaction (R1) and biomass reaction (R70) are essential. As can be seen,

a knockout of reactions R21-R24 and R40 is lethal because there is no way to produce 2-oxogluterate,

which is needed for the biomass reaction (although this is not directly obvious for reaction R20 and R40).

Other essential reactions are R93 (to obtain ammonia) and R12r (to obtain ribose-5-P). Single knockouts in

oxidative phosphorylation (R80) or lower glycolysis (R7/R8) decrease the yield, because those are used by

the high-yield EFMs. Some double knockouts are synthetically lethal—i.e. only the double knockout is lethal

but each of the single knockouts is viable. These are mostly combinations of knockouts in lower glycolysis,

the ED-pathway and the pentose phosphate pathway. A few double knockouts lower the yield dramatically,

mostly combinations of the PPP and the TCA cycle. In panel (b), the scaled yield epistatis is calculated with

the formula

Y1,2 − Y1 · Y2

|Ỹ1,2 − Y1 · Y2|
, (19)

where Yi is the scaled yield of knockout i and Ỹ1,2 = min(Y1, Y2) if Ỹ1,2 > Y1 · Y2 and Ỹ1,2 = 0 otherwise

(definition from [31]). Here we can clearly see the synthetically lethal double knockouts and the double

knockouts that have a dramatically lower yield in red. In blue (i.e. epistasis score = 1) we find combinations

or knockouts where one is dominant, while the other one doesn’t reduce the yield any further. For instance,

this is the case for sequential reactions in the same pathway (e.g. R10a and R10b).
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Figure S21: Monod surface plots for strains deficient in EMP glycolysis, ED glycolysis, or respiration.
(a) Predicted growth rates, as a function of glucose and oxygen level, for simulated wild-type E. coli. (b)
Changes in growth after a simulated suppression of the ED pathway (wild-type surface shown in blue, mutant
surface shown in red). (c) Changes in growth after a simulated suppression of EMP pathway. (d) Changes
in growth after a simulated suppression of respiration. Compare Figure 6 in the main article, which is based
on the same data.
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Relative growth rates on
low oxygen (0.0021 mM)
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Scaled growth rate epistasis on
low oxygen (0.0021 mM)
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Relative growth rates on
low glucose (0.1 mM)
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Scaled growth rate epistasis on
low glucose (0.1 mM)

0.0

0.2

0.4

0.6

0.8

1.0

−0.8

−0.4

0.0

0.4

0.8

0.0

0.2

0.4

0.6

0.8

1.0

−0.8

−0.4

0.0

0.4

0.8

0.0

0.2

0.4

0.6

0.8

1.0

−0.8

−0.4

0.0

0.4

0.8

Figure S22: Epistatis effect of double knockouts on growth rate. Relative growth rate (a,c,e) and scaled
growth rate epistasis (b,d,f). Epistasis values are computed using Equation (19), but based on growth rates
instead of biomass yields. The three rows refer to standard conditions (a-b), low oxygen conditions (c-d),
and low glucose conditions (e-f) respectively. The relative growth rates of single reaction knockouts are
shown on the diagonal (only in the left column).
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Figure S23: Epistatic effect of double knockouts on biomass yield. (a) Relative yields of double knockouts
as a fraction of the maximal yield (i.e. the yield of the wild-type). (b) Scaled epistatis for biomass yields.
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4 Mathematical derivations

4.1 Computing a stationary flux distribution in a metabolic network from measured
fluxes

Assume that absolute fluxes have been measured using 13C metabolic flux analysis (MFA), but the list of

fluxes does not cover all the 52 reactions in our CCM model. We now describe a method to estimate the

missing reaction fluxes (and maybe adjust the measured ones) to obtain a consistent flux distribution, i.e. one

that satisfies the constrains of the system, including mass balance. One option is to find the flux mode (v)

that minimizes the l1 distance to the measured exchange fluxes (v̄±σ) and fulfills mass balance constraints:

minimize
∑

i∈Imeas

|vi − v̂i|

Sv = 0

vmin ≤ v ≤ vmax

v̄i − σi ≤ v̂i ≤ v̄i + σi, (20)

where v̂ is an auxiliary variable that represents the actual flux, constrained to be within the confidence

interval of the absolute measured fluxes. This linear programming problem may have non-unique solutions.

To reduce the set of solutions, we add a secondary optimization goal, namely to maximize ATP production

(i.e. in our model, to maximize the reaction flux vr82).

maximize vr82∑
i∈Imeas

|vi − v̂i| = ε1

Sv = 0

vmin ≤ v ≤ vmax

v̄i − σi ≤ v̂i ≤ v̄i + σi, (21)

where ε1 is the minimum value achieved in the first optimization.

4.2 Global cost sensitivities can be approximated by local cost sensitivities

We now compute the sensitivities between enzyme cost and model parameters such as kcat values. In analogy

to the local and global flux sensitivities in Metabolic Control Analysis, called elasticities and flux response

coefficients, we distinguish local and global sensitivities for enzyme cost at predefined fluxes. From these

sensitivities, we can compute local and global sensitivities between parameter perturbations and the cell

growth rate. To define local sensitivities, we perturb a parameter and adapt only the enzyme of the affected

reaction (while all metabolite levels and fluxes must remain unchanged). To define the global sensitivities,

we perturb the same parameter and adapt all enzymes (and, accordingly, all metabolite levels (where the

flux must remain the same and the cost-optimal adaptation is chosen). Below we show that, for small

parameter changes, local and global adaptation lead to the same first-order cost changes, i.e. that local and

global sensitivities are identical.

To define the optimal enzyme cost Eopt
met and the optimal logarithmic metabolite profile s0 for a given flux
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vector v, we solve the enzyme cost minimization problem

Eopt
met(v, k) = mins Emet(v, s, k)

sopt(v, k) = argmins Emet(v, s, k) (22)

with an enzymatic cost function Emet(v, s, k) derived from a kinetic model. The fluxes v are fixed and given,

the vector of logarithmic metabolite levels s can be varied within the metabolite polytope, and the vector k

contains model parameters that affect individual reaction rates.

To show that local and global sensitivities are identical, we start from the unperturbed reference values k0

and the resulting optimal metabolite vector s0; then we expand the enzymatic cost function quadratically

around this point with respect to s. To simplify the notation (and without loss of generality), we consider a

one-dimensional problem (with scalar logarithmic concentration s):

Emet(v, s, k) ≈ a(s− s0)2 + b︸︷︷︸
0

(s− s0) + c, (23)

with expansion coefficients a, b, and c. Since we expand around an optimum point, the coefficient b vanishes.

Now we consider a small parameter change dk, which changes the cost landscape (and thereby the expansion

coefficients):

Emet(v, s, k + dk) ≈ [a+ α dk] (s− s0)2 + [β dk] (s− s0) + [c+ γ dk]. (24)

We compute the new optimum point sopt∗ by equating the derivative to zero:

0 = 2[a+ α dk] (sopt∗ − s0) + [β dk]

⇒ sopt∗ = s0 −
β dk

2(a+ α dk)
≈ s0 −

β dk

2 a
, (25)

where we assume that a ≥ 0 (i.e. we assume that we started from a unique optimum state). To compute the

resulting cost, we insert sopt∗ back into the perturbed cost function:

Eopt
met(v, k + dk) = Emet(v, s

opt∗(k + dk), k + dk)

≈ [a+ α dk](−β dk

2 a
)2 + [β dk] (−β dk

2 a
)︸ ︷︷ ︸

second-order terms in dk

+ [c+ γ dk]︸ ︷︷ ︸
≈Emet(v,s0,k+dk)

. (26)

This means:

∂Eopt
met(v, k)

∂k
=
∂Emet(v, s

opt(k), k)

∂k
=
∂Emet(v, s, k)

∂k
|s=s0 . (27)

In other words: the first-order cost change after a parameter perturbation, and with an optimal adaptation of

all enzyme levels, is given by the cost change that would ensue from adapting only the affected enzyme (and

keeping all metabolite levels unchanged). Note that our first-order expansion holds only for small (relative)

parameter changes.

4.3 Enzyme cost sensitivities of kinetic constants

Cost sensitivities for kcat values In the case of kcat values, we obtain a simple formula for the local cost

sensitivities: with the rate law v = E k f(s), with fixed flux v and logarithmic metabolite levels s (and thus

fixed f), we obtain Eadapt · kadapt = Eref · kref = v
f = const. (where “ref” denotes the reference state, and
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“adapt” the perturbed state with adapted enzyme level). The adapted enzyme level reads Eadapt = Eref
kref
kadapt

and its derivative reads ∂Eadapt

∂kadapt
= −Eref kref

k2adapt
. In the original reference state (where kadapt = kref) we obtain

∂Eadapt

∂kadapt
= −Eref

kref
.

The local cost sensitivity (with enzyme cost weight, i.e. molecular mass w) thus reads

∂Emet

∂k
= −w Eref

kref
= −E

ref
met

kref
.

As we saw before, these (first-order) local cost sensitivities are identical to the (first-order) global cost

sensitivities.

Cost sensitivities for Keq values To compute the cost sensitivity of an independent change in one of the

Keq values, we first calculate the elasticity

Emet = w v · k−1
cat · ηsat(c)−1 ·

[
1−Q(c)K−1

eq

]−1

∂Emet

∂Keq
=
Emet

Keq
· ∂ logEmet

∂ logKeq
= −Emet

Keq
·

QK−1
eq

1−QK−1
eq

= −Emet

Keq
· 1

KeqQ−1 − 1
, (28)

where Q(c) is the mass-action ratio, and ηsat(c) represents the saturation efficiency (which does not depend

on Keq). Using the definition ηthr =
(
1−Q(c)K−1

eq

)
, we can rewrite this result as

∂Emet

∂Keq
= −Emet

Keq
·
[
ηthr(c)−1 − 1

]
. (29)

Note that this formula refers to individual changes in Keq values; it does not account for dependencies

between Keq values due to Wegscheider conditions.

Cost sensitivities for KM values (reaction substrates) The expression for the cost sensitivity of a KM

value is given by

Emet = w v k−1
cat η

thr(c)−1 ·

 ∏
j

cj
KM,cj∏

j

(
1 +

cj
KM,cj

)
+
∏
k

(
1 + ck

KM,ck

)
− 1

−1

= w v k−1
cat η

thr(c)−1 ·

∏
j

(
KM,cj

cj
+ 1

)
+
∏
j

(
KM,cj

cj

)
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

) , (30)

where j is the index for c for all substrates and k for all products. We will calculate the sensitivity to changes

in the Michaelis-Menten constant of a substrate s, which we denote by Ks ≡ KM,cs . For this cost function,
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the KM sensitivity would be

∂Emet

∂Ks
= w v k−1

cat η
thr(c)−1 ·

 1

cs

∏
j 6=s

(
KM,cj

cj
+ 1

)
+

1

cs

∏
j 6=s

KM,cj

cj
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

)
=
Emet η

sat(c)

Ks

Ks

cs

∏
j 6=s

(
KM,cj

cj
+ 1

)
+
Ks

cs

∏
j 6=s

KM,cj

cj
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

)
=
Emet η

sat(c)

Ks

∏
j

(
KM,cj

cj
+ 1

)
−
∏
j 6=s

(
KM,cj

cj
+ 1

)
+
∏
j

KM,cj

cj
·

(∏
k

(
1 +

ck
KM,ck

)
− 1

)
=
Emet η

sat(c)

Ks

ηsat(c)−1 −
∏
j 6=s

(
KM,cj

cj
+ 1

)
=
Emet

Ks

1− ηsat(c)
∏
j 6=s

(
KM,cj

cj
+ 1

) . (31)

If s is the only substrate for this reaction, we are left with

∂Emet

∂Ks
=
Emet

Ks

[
1− ηsat(c)

]
. (32)

Again, this formula refers to individual changes in KM values; it does not account for dependencies due to

Haldane relationships.

Cost sensitivities for KM values (reaction products) We start again with equation (30) and take the

derivative with respect to Kp ≡ KM,cp – the Michaelis-Menten constant to one of the products. In this case,

the sensitivity is given by

∂q

∂Kp
= −Emet

Kp
· ηsat(c) ·

∏
j

KM,cj

cj
·
∏
k

ck
KM,ck

·
∏
k 6=p

(
KM,ck

ck
+ 1

)

= −Emet

Kp
· ηsat(c) ·Q(c) ·

∏
j KM,cj∏
kKM,ck

·
∏
k 6=p

(
KM,ck

ck
+ 1

)
, (33)

and in case there is only one substrate and one product, this simplifies to

∂Emet

∂Kp
= −Emet

Kp
·

∏
k

ck
KM,ck

1 +
∏
k

cj
KM,cj

+
∏
k

ck
KM,ck

. (34)

4.4 Growth-rate sensitivities of kinetic constants

Since we use a nonlinear function to convert enzyme cost (Emet) into growth rate (µ), the sensitivities of µ

to local changes in a kinetic constant (k) require an additional prefactor, i.e. according to the chain rule:

∂µ

∂k
=

∂µ

∂Emet
· ∂Emet

∂k
. (35)

For the second term on the right, one can use the results from the previous section on cost sensitivities (SI

section 4.3), replacing k with either kcat, Ks, Kp, or Keq. The first term on the right does not depend on the

type of kinetic constant, and can be expressed as a function of µ. To compute it, we must first express µ as a
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direct function of Emet:

rBM =
vBM

Emet
=

vBM

Emet
(36)

µ =
fprot a rBM

1 + b rBM fprot
=

fprot a vBM

Emet + b vBM fprot
. (37)

Therefore, the derivative would be:

∂µ

∂Emet
= − fprot a vBM

(Emet + b vBM fprot)
2 = − µ2

fprot a vBM
. (38)

Quite often, it is useful to calculate the scaled sensitivity:

∂ lnµ

∂ lnEmet
= − Emet

Emet + b vBM fprot
=
b

a
µ− 1. (39)

If a kinetic parameter changes from a reference value k0 to a value k, we can use the first-order Taylor

expansion for µ in log-scale:

lnµ = lnµ0 +
∂ lnµ

∂ ln k

∣∣∣∣
k0

(ln k − ln k0) + . . .

ln

(
µ

µ0

)
≈ ln

(
k

k0

)
· ∂ lnµ

∂ ln k

∣∣∣∣
k0

= ln

(
k

k0

)
· ∂ lnµ

∂ lnEmet

∣∣∣∣
k0

· ∂ lnEmet

∂ ln k

∣∣∣∣
k0

= ln

(
k

k0

)
·
(
b

a
µ0 − 1

)
· ∂ lnEmet

∂ ln k

∣∣∣∣
k0

(40)

4.5 Increasing a kcat value cannot increase the enzyme demand

Proposition 1 A local increase in an enzyme’s kcat value can never increase the optimal total enzyme cost.

Proof Let Eopt
met(v, k) ≡ mins Emet(v, s, k) be the minimal enzyme cost required (optimized over all metabo-

lite level profiles s) for a given flux vector v and kinetic parameter set k. Let k̂ be another kinetic parameters

set which is identical to k except for the kcat of a single enzyme i, specifically k̂cat,i > kcat,i. Now, for any

metabolite profile s, if we compare Emet(v, s, k̂) to Emet(v, s, k) the only change would be the cost associated

with that one enzyme, so

Emet(v, s, k̂)− Emet(v, s, k) = Ei(vi, s, k̂)− Ei(vi, s, k)

= hivi
k̂cat,i f(s)

− hivi
kcat,i f(s) = hivi

f(s)

(
k̂−1

cat,i − k
−1
cat,i

)
≤ 0 . (41)

Therefore, s Emet(v, s, k̂) ≤ Emet(v, s, k) holds for all metabolute profiles s, and this inequality will also

trivially apply to the minima of both functions.

4.6 Approximation formula for Monod curves and higher-dimensional Monod func-
tions

A Monod function – the cellular growth rate as a function of extracellular metabolite concentrations – can

have a complicated shape. However, we can obtain a simple formula with interpretable parameters based

on the logic of EFCM and on some simplifying assumptions:
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1. We assume that the cell is bound to use a single, predefined flux mode (e.g. an EFM), and compute the

Monod surface for this flux mode.

2. We assume that the metabolic enzymes occupy a fixed fraction of the biomass.

3. As an approximation, we assume that all internal metabolite levels remain constant despite changes

of the external nutrient levels; this implies that (given our flux mode) all internal enzyme levels are

constant, too, and that only the transporter levels are changing – the same type of approximation that

was made in satFBA [12].

The first assumption will later be dropped, and the second one can be avoided3. To derive our formula, we

consider a kinetic model and split the total cost of metabolic enzymes into

Emet =
∑
t

wtc
trans
t︸ ︷︷ ︸

Etransporter

+
∑
i

wi c
enz
i︸ ︷︷ ︸

Einternal

, (42)

where wt and wi denote cost weights (e.g. protein masses) for transporters and metabolic enzymes, respec-

tively. With the yields yt = vbm

vt
for the different substances taken up, the external substance concentra-

tions xt, and the transporter rate laws vt = ctrans
t ft(xt), we can solve for the transporter concentrations

ctrans
t = vt

ft(xt)
= vbm

yt ft(xt)
and write the enzyme cost as

Emet =
∑
t

(
wt
yt

)
︸ ︷︷ ︸
αt

vbm

ft(xt)
+

(
Einternal

vbm

)
︸ ︷︷ ︸

β

vbm, (43)

where the expressions in round brackets are constant for the given flux mode. From now on we call these

expressions αt and β for ease of notation. The αt depend directly on the shape of the flux mode, while β

depends also on kinetics and needs to be computed by ECM. In a full EFCM analysis, β would also depend

on the external concentrations xt, but based on Assumption 3, we treat it as constant, and compute it once

for a typical choice of external concentrations. Now we can compute the cell growth rate:

µ =
vbm

cbm
=
Emet

cbm︸ ︷︷ ︸
γ

· vbm

Emet
= γ · vbm∑

t αt
vbm
ft(xt)

+ β vbm
= γ · 1∑

t
αt

ft(xt)
+ β

, (44)

where γ (the fraction of metabolic enzyme within the biomass) is assumed to be constant4. In analogy to

Eq. (), we can express it as γ = fccm fprot. Now we choose rate laws for the transporters. We first assume

an irreversible mass-action rate law ft(xt) = kt xt with a rate constant kt. Inserting this into Eq. (44), we

obtain

µ = γ · 1∑
t
α′

t

xt
+ β

, (45)

where α′t = αt/kt. Alternatively, we may assume an irreversible Michaelis-Menten transporter kinetics

ft(xt) = kt xt

Kt+xt
with rate constant kt and Michaelis-Menten constant Kt. Inserting this into Eq. (44), we

3We make this assumption just for ease of demonstration. A similar formula, based on a growth-rate-dependent enzyme fraction,
could be derived as in section 1.3.

4As noted above, this assumption can be dropped. If we replace γ by a linear function a+b µ with constant coefficients, the equation
can still be easily solved for µ (see the corresponding derivation in section 1.3). In the resulting formula, we obtain another saturable
function around around the fraction.
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obtain

µ = γ · 1∑
t αt

Kt+xt

kt xt
+ β

=
γ∑

t αt
Kt

kt xt
+
∑
t αt

xt

kt xt
+ β

=
γ∑

t
α′′

t

xt
+ β′′

, (46)

that is, the same form as before, but with parameters α′′ = αtKt

kt
and β′′ = β +

∑
t
αt

kt
. By comparing this to

the classical hyperbolic Monod curve

In summary, this means: for a single external metabolite, we obtain a classical hyperbolic Monod curve of

the form µ = µmax x
k+KMonod

, with the effective parameters µmax = γ/β and KMonod = α/β, where primes (in α

and β) have been omitted for generality. For Monod functions with several external metabolites, we obtain

a similar form; a simple hyperbolic Monod curve with an effective external concentration xeff = [
∑
t
αt

xt
]−1,

given by a weighted harmonic mean of the actual external concentrations xt. For both types of rate laws,

the parameters are directly obtained from a single ECM run with the model inquestion, and for a reference

state with typical external concentrations.

The function parameters depend on the flux mode assumed, and so far, we assumed that this flux mode

was fixed and given (Assumption 1). Now we drop this assumption and assume that the cell can choose its

optimal flux mode for each external condition (combination of external concentrations). This is quite easy

to model: we know that the optimal flux modes are EFMs. For each EFM, we obtain a Monod function of the

above form, and to obtain the actual Monod function (assuming an optimal choice of fluxes), we just take

the maximum among all these functions. With an index j for EFMs, the final Monod function reads:

µ(x1, .., xn) = maxj
γ∑

t
αtj

xt
+ βj

, (47)

where primes (in α and β) have again been omitted. Note that, again, this Monod function holds both for

linear and for Michaelis-Menten transporter kinetics (which will lead to different choices of the parameter

values).

Let us now revisit our above assumptions. Assumtion 1 has already been dropped. As noted before, as-

sumption 2 can also be dropped, leading to a simple nonlinear scaling of our formula. Regarding trans-

porter kinetics, we considered two possible rate laws, and the extension of our formula to other rate laws

is straightforward. Thus, we are only left with Assumption 3, the assumption that internal metabolite and

enzyme levels are assumed to be constant and that changes in external concentrations are solely compen-

sated by changing transporter levels. This is the main difference between our simple Monod formula and a

full calculation by EFCM. How can this assumption be justified? The parameters in our simplified formula

are based on a reference state with typical external concentrations and the ensuing optimal enzyme levels.

If the external substance concentrations are changing, an adaptation of the transporter level only is always

possible, but more costly than an optimal global enzyme adjustment. Therefore, starting from our reference

state (and computing the Monod parameters in this state), our Monod function will yield a lower bound
on the actual Monod function (which is based on a global adjustment). Furtermore, as pointed out in the

section on sensitivities, the difference between a local and a distributed, global enzyme adjustent (and thus,

the difference between the simplified and the true Monod function) is a second-order effect: in the reference

state, the two functions yield the same value (by construction), and close the reference state, the differences

will be small. This also means: if we are interested in a specific region of the external concentration space,

we can always improve our approximations by choosing a reference state in that region.

39



5 Model details and elementary flux mode statistics

5.1 Tables with model details

Reaction EC number name KEGG ID reaction
Glycolysis
R1 2.7.1.69 pts RPTSsy GLU ext + PEP = GLU 6 P + PYR
R2r 5.3.1.9 pgi R02740 GLU 6 P = FRU 6 P
R3 2.7.1.11 pfk R04779 FRU 6 P + ATP = FRU BIS P + ADP
R4 3.1.3.11 fbp R00762 FRU BIS P = FRU 6 P
R5r 4.1.2.13 ald R01070 FRU BIS P = DHAP + GA 3P
R6r 5.3.1.1 tim R01015 GA 3P = DHAP
R7ra 1.2.1.12 gap R01061 GA 3P + NAD = DPG + NADH
R7rb 2.7.2.3 pgk R01512 DPG + ADP = PG 3 + ATP
R7rc 5.4.2.11 /

5.4.2.12
pgm R01518

R8r 4.2.1.11 pgh R00658 PG = PEP
R9 2.7.1.40 pyk R00200 PEP + ADP = PYR + ATP
RR9 2.7.9.2 pps R00199 PYR + 2 ATP = PEP + 2 ADP
Pentose Phosphate Pathway
R10a 1.1.1.49 zwf R00835 GLU 6 P + NAD = GLU LAC 6 P + NADH
R10b 3.1.1.31 glh R02035 GLU LAC 6 P = GLUCO 6 P
R10c 1.1.1.44 pgd R01528 GLUCO 6 P + NAD = NADH + CO2 + RIBULOSE 5 P
R11r 5.1.3.1 rpe R01529 RIBULOSE 5 P = XYL 5 P
R12r 5.3.1.6 rpi R01056 RIBULOSE 5 P = RIBOSE 5 P
R13r 2.2.1.1 txt1 R01641 RIBOSE 5 P + XYL 5 P = SED 7 P + GA 3P
R14r 2.2.1.2 tal R08575 GA 3P + SED 7 P = ERYTH 4 P + FRU 6 P
R15r 2.2.1.1 txt2 R01067 ERYTH 4 P + XYL 5 P = GA 3P + FRU 6 P
R60 4.2.1.12 edd R02036 GLUCO 6 P = KDPG
R61r 4.1.2.14 eda R05605 KDPG = GA 3P + PYR
TCA Cycle
R20 2.3.1.54 pfl R00212 PYR + CoASH = ACETYL CoA + FORMATE
R21 1.2.4.1 &

2.3.1.12
pdh R00209 PYR + NAD + CoASH = ACETYL CoA + CO2 + NADH

R22 2.3.3.1 csn R00351 OXALO + ACETYL CoA = CITRATE + CoASH
R23r 4.2.1.3 acn R01324 CITRATE = ISOCIT
R24 1.1.1.41 icd R00709 ISOCIT + NAD = AKG + NADH + CO2
R25 1.2.4.2 kgd R08549 AKG + NAD + CoASH = NADH + SUCC CoA + CO2
R26r 6.2.1.5 scs R00405 SUCC CoA + ADP = SUCC + ATP + CoASH
R27 1.3.5.1 sdh R02164 SUCC + ADP + OXY ext = FUMARATE + ATP
R27b 1.3.5.4 frd R02164 FUMARATE + NADH = SUCC + NAD
R28r 4.2.1.2 fum R01082 FUMARATE = MALATE
R29r 1.1.1.37 mdh R00342 MALATE + NAD = OXALO + NADH
Anapleurotic Reactions
R40 4.1.1.31 ppc R00345 PEP + CO2 = OXALO
R41 1.1.1.38 me R00214 MALATE + NAD = PYR + NADH + CO2
R42 4.1.1.49 ppck R00341 OXALO + ATP = PEP + ADP + CO2
Redox-associated reactions
R53r 1.1.1.27 ldh R00703 PYR + NADH = LACTATE + NAD
R54ra 1.2.1.10 ada R00228 ACETYL CoA + NADH = ACALD + NAD + CoASH
R54rb 1.1.1.1 adh R00754 ACALD + NADH = ETOH + NAD
R55a 2.3.1.8 pta R00230 ACETYL CoA = ACETYL P + CoASH
R55b 2.7.2.1 ack R00315 ACETYL P + ADP = ACETATE + ATP
Biomass Production
R70 biomass
Oxidative phosphorylation
R80 oxphos ECnadh NADH + 2 ADP + OXY ext = NAD + 2 ATP
R82 atpmain ATP = ADP + ATP main
Membrane Transport Reactions
R90 ex etoh ETOH = ETOH ext
R91 ex ace ACETATE = ACETATE ext
R93 ex nh3 NH3 ext = NH3
R94 ex lac LACTATE = LACTATE ext
R95 ex suc SUCC = SUCC ext
R96 ex for FORMATE = FORMATE ext
R97r ex co2 CO2 = CO2 ext

Table S2: Reactions in the model. Reversible reactions are denoted by reaction numbers ending with an r.
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Original reaction New reaction(s) Reaction formula
R7r R7ra GA˙3P + NAD = DPG + NADH

R7rb DPG + ADP = PG3 + ATP
R7rc PG3 = PG

R10 R10a GLU˙6˙P + NAD = GLULAC6P + NADH
R10b GLULAC6P = GLUCO6P
R10c GLUCO6P + NAD = NADH + CO2 + RUBILOSE˙5˙P

R27r R27 SUCC + ADP + OXYext = FUMURATE + ATP
R81 merged with R27
R27r R27b FUMERATE + NADH = SUCC + NAD
R83 merged with R27b
R54r R54ra ACETYL˙CoA + NADH = ACALD + NAD + CoASH

R54rb ACALD + NADH = ETOH + NAD
R55r R55a ACETYL˙CoA + ADP = ACETYLP + CoASH

R55b ACETYLP + ADP = ACETATE + ATP
new R60 GLUCO6P = KDGP
new R61r KDGP = GA3P + PYR

Table S3: Changes in reactions compared to the original model in Carlson et al. [20].

Name KEGG ID Stoichiometry Molecular mass Weight in biomass #Carbons #Carbons
[mg mmol−1] [mg mmol−1] in biomass

acetyl-CoA C00024 -41 59 -2419 2 -82
α-ketoglutarate C00026 -14 146 -2044 5 -70
CO2 C00011 2 44 88 1 2
DHAP C00236 -5 266 -1330 3 -15
glucose-6P C00345 -4 180 -720 6 -24
NH3 C00014 -139 17 -2363 0 0
oxaloacetate C00007 -24 132 -3168 4 -96
PEP C00631 -32 88 -2816 3 -96
pyruvate C00022 -38 88 -3344 3 -11
ribose-5P C00117 -13 150 -1950 5 -65
erythrose-4P C00279 -5 120 -600 4 -20
TOTAL -20666 -580

Table S4: Description of the biomass-producing reaction

Reaction kcat value
R1 103.9
R2r 321.9
R3 115.0
R4 25.4
R5r 8.0
R6r 7838.0
R7ra 233.2
R7rb 390.2
R7rc 53.1
R8r 210.9
R9 513.1
RR9 13.2
R10a 241.0
R10b 409.8
R10c 110.2
R11r 133.9
R12r 1362.0

Reaction kcat value
R13r 46.4
R14r 16.7
R15r 75.3
R20 4807.8
R21 37.7
R22 358.7
R23r 32.6
R24 108.5
R25 150.6
R26r 89.2
R27 78.1
R27b 179.3
R28r 281.7
R29r 210.7
R40 123.2
R41 75.9
R42 51.5

Reaction kcat value
R53r 139.4
R54ra 0.35
R54rb 324.1
R55a 91.3
R55b 58.8
R60 247.5
R61r 79.9
R70 99.5
R80 4.00E+06
R82 180.6
R90 100.2
R91 100.1
R93 99.7
R94 100.1
R95 100.0
R96 100.1
R97r 100.1

Table S5: kcat values used in the model (in s−1)
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Reaction Metabolite KM value
R1 glu6p 0.101735
R1 glucoseExt 0.11626
R1 pep 0.098295
R1 pyr 0.101735
R2r fru6p 0.162398
R2r glu6p 0.272797
R3 adp 0.113417
R3 atp 0.140957
R3 fru6p 0.116272
R3 frubisp 0.113417
R4 fru6p 0.170733
R4 frubisp 0.016115
R5r dhap 0.078151
R5r frubisp 0.204365
R5r ga3p 0.078151
R6r dhap 0.074992
R6r ga3p 0.744648
R7ra dpg 0.05757
R7ra ga3p 0.686739
R7ra nad 0.055756
R7ra nadh 0.05757
R7rb adp 0.042553
R7rb atp 0.235002
R7rb dpg 0.042553
R7rb pg3 0.235002
R7rc pg3 0.132459
R7rc pg 0.075495
R8r pep 0.130673
R8r pg 0.108362
R9 adp 0.218366
R9 atp 8.453199
R9 pep 0.2914
R9 pyr 0.047641
RR9 adp 0.087324
RR9 atp 0.035013
RR9 pep 0.093447
RR9 pyr 0.086415
R10a glu6p 0.313906
R10a glulac6p 0.128734
R10a nad 0.863228
R10a nadh 0.128734
R10b glulac6p 0.168255
R10b gluco6p 0.059434
R10c co2 0.062615
R10c gluco6p 0.101332
R10c nad 0.059104
R10c nadh 0.062615
R10c ribulose5p 0.062615
R11r ribulose5p 0.087822
R11r xyl5p 0.113867
R12r ribose5p 1.247289
R12r ribulose5p 0.558142
R13r ga3p 1.22708
R13r ribose5p 0.97228
R13r sed7p 2.110123
R13r xyl5p 0.15677
R14r eryth4p 0.175159
R14r fru6p 0.888093
R14r ga3p 0.577958
R14r sed7p 0.206421
R15r eryth4p 0.093367

Reaction Metabolite KM value
R15r fru6p 0.736973
R15r ga3p 1.269744
R15r xyl5p 0.151503
R20 acetylcoa 0.035199
R20 coash 0.016796
R20 formate 6.347527
R20 pyr 2.180238
R21 acetylcoa 0.158941
R21 co2 0.158941
R21 coash 0.062916
R21 nad 0.062916
R21 nadh 0.158941
R21 pyr 0.29068
R22 acetylcoa 0.08665
R22 citrate 0.075572
R22 coash 0.075572
R22 oxalo 0.028686
R23r citrate 3.48647
R23r isocit 2.420319
R24 akg 0.48257
R24 co2 2.022353
R24 isocit 0.022669
R24 nad 1.064576
R24 nadh 0.011912
R25 akg 0.067023
R25 co2 0.107909
R25 coash 0.092671
R25 nad 0.092671
R25 nadh 0.107909
R25 succcoa 0.107909
R26r adp 0.056003
R26r atp 0.081214
R26r coash 0.007309
R26r succ 0.237
R26r succcoa 0.010492
R27 adp 0.370552
R27 atp 0.026987
R27 fumarate 0.081233
R27 oxygen 0.370552
R27 succ 0.075581
R27b fumarate 0.020135
R27b nad 0.043142
R27b nadh 0.231791
R27b succ 0.205437
R28r fumarate 0.313894
R28r malate 0.61515
R29r malate 3.189696
R29r nad 0.459655
R29r nadh 0.032069
R29r oxalo 0.028266
R40 co2 0.114505
R40 oxalo 0.04259
R40 pep 0.363706
R41 co2 0.088485
R41 malate 0.361402
R41 nad 0.069121
R41 nadh 0.088485
R41 pyr 0.088485
R42 adp 0.04843
R42 atp 0.074986
R42 co2 5.210404

Reaction Metabolite KM value
R42 oxalo 0.570976
R42 pep 0.064276
R53r lactate 0.517374
R53r nad 0.517374
R53r nadh 0.019328
R53r pyr 0.019328
R54ra acetylcoa 0.024179
R54ra acald 1.801732
R54ra coash 0.00786
R54ra nad 0.041481
R54ra nadh 0.112985
R54rb acald 0.059298
R54rb etoh 5.494644
R54rb nad 0.168638
R54rb nadh 0.059298
R55a acetylcoa 0.042439
R55a acetylp 0.312643
R55a coash 0.085985
R55b acetate 3.435988
R55b acetylp 0.154167
R55b adp 0.402085
R55b atp 0.071354
R60 gluco6p 0.043396
R60 kdpg 0.149596
R61r ga3p 0.001465
R61r kdpg 0.560779
R61r pyr 0.001465
R70 acetylcoa 0.61
R70 akg 0.44
R70 coash 1.37
R70 eryth4p 0.03
R70 glu6p 8.75
R70 nad 2.55
R70 nadh 0.08
R70 nh3 0.01
R70 oxalo 0.00
R70 pep 0.18
R70 pyr 0.39
R70 ribose5p 1.32
R80 adp 0.001
R80 atp 1000
R80 nad 1000
R80 nadh 0.001
R80 oxygen 1000
R82 adp 0.13004
R82 atp 0.076899
R82 ATPmain 0.13004
R90 etoh 0.099929
R90 ethanolExt 0.100071
R91 acetate 0.099946
R91 acetateExt 0.100054
R93 nh3 0.099855
R93 nh3Ext 0.100145
R94 lactate 0.099963
R94 lactateExt 0.100037
R95 succ 0.099985
R95 succinateExt 0.100015
R96 formate 0.099939
R96 formateExt 0.100061
R97r co2 0.099947
R97r co2Ext 0.100053

Table S6: KM values used in the model (in mM)
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Reaction Keq value
R2r 0.50987024
R5r 0.000297615
R6r 11.249283
R7ra 0.088486876
R7rb 727.33174
R7rc 0.16087119
R8r 3.5014543
R11r 2.3258292
R12r 2.3233211
R13r 3.6538527

Reaction kcat value
R14r 0.89996461
R15r 37.50713
R23r 0.073843788
R26r 0.52174352
R28r 4.7316568
R29r 6.11036E-05
R53r 20577.22
R54ra 0.002258241
R54rb 2767.6607
R61r 0.009573533

Table S7: Keq values used in the model

Reaction Molecular mass
R1 255848
R2r 61530
R3 139360
R4 36834
R5r 39147
R6r 53940
R7ra 35530
R7rb 41120
R7rc 28556
R8r 45650
R9 50000
RR9 87430
R10a 55700
R10b 36310
R10c 102960
R11r 24554
R12r 19466.5

Reaction Molecular mass
R13r 73043
R14r 35219
R15r 73043
R20 85357
R21 282880
R22 96020
R23r 95587.5
R24 45760
R25 1.21E+06
R26r 71170
R27 792299
R27b 181038.5
R28r 60000
R29r 32337
R40 198120
R41 63197
R42 59643

Reaction Molecular mass
R53r 36535
R54ra 96127
R54rb 96127
R55a 77172
R55b 43290
R60 64600
R61r 22300
R70 59821.5
R80 910000
R82 59821.5
R91 59197
R93 44515
R94 59168
R95 45436
R96 30991

Table S8: Enzyme molecule masses used in the model (in Daltons)

Compounds fixed total concentration (mM)
atp adp 10.185
nad nadh 2.6332
coash succoa acetylcoa 11.249283

Table S9: Cofactor pairs. In the model, some cofactors are not newly synthesized by reactions, but only
interconverted in pairs. We have fixed the total concentration for these metabolites.
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5.2 Sampling of flux modes near the Pareto front
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Figure S24: Flux modes and EFMs near the
Pareto front. To determine the shape of the
Pareto front (containing any flux modes, not
only EFMs), we first considered EFMs that
are either Pareto-optimal EFMs or among the
highest-ranking EFMs in terms of yield or growth
rate. Then we sampled flux modes that are
convex combinations of a few of these EFMs.
Grey dots represent the samples, light red dots
are EFMs, large red squares are Pareto-optimal
EFMs and black squares are those sampled non-
elementary flows that turned out to be Pareto-
optimal. Pareto-optimal EFMs must also be
Pareto-optimal among EFMs, i.e. they must not
be dominated by any other EFM; however, the
converse need not hold in all cases: there can be
EFMs that are Pareto-optimal among EFMs, but
not among all flux modes. Note that the figure
is zoomed to show the entire span of the Pareto
front in detail.

5.3 Selected elementary flux modes

Acronym∗ EFM # Biomass yield
[g/C-mol]

Growth
rate
[h−1]†

Oxygen
uptake

Acetate
secre-
tion

Lactate
secre-
tion

Succinate
secre-
tion

fraction
PPP

# active
reactions

max-gr 1565 18.6 0.739 0.49 0 0 0 2.77 24
pareto 1218 20.8 0.699 0.42 0 0 0 2.50 25
max-yield 938 22.1 0.422 0.39 0 0 0 0 28
ana-lac 1295 2.1 0.258 0 0 0.92 0.02 0.90 31
aero-ace 559 15.8 0.520 0.21 0.35 0 0 0.11 28
exp 9999 17.7 0.409 0.29 0.22 0 0 0.39 38

∗max-gr: maximum growth rate; max-yield: maximum yield; ana-lac: anaerobic lactate fermentation; aero-suc: aerobic succinate
fermentation; aero-ace: aerobic acetate fermentation; exp: experimentally measured flux distribution †Growth rate is given for standard
conditions, where [glucose] = 100 mM, and [O2] = 0.21 mM.

Table S10: Details on selected EFMs representing different growth strategies. Metabolic fluxes are given in
carbon moles (or O2 moles) per carbon mole of glucose taken up. The flux fraction through the pentose
phosphate pathway (PPP) is defined as the ratio R1/R10a (see Figure S4 for the reaction numbers in the
network).
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Figure S25: The flux distribution of max-gr (EFM #1565).
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Figure S26: The flux distribution of pareto (EFM #1218).
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Figure S27: The flux distribution of max-yield (EFM #938).
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Figure S28: The flux distribution of aero-ace (EFM #1155).
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Figure S29: The flux distribution of ana-lac (EFM #1295).
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Figure S30: The flux distribution of exp.
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6 List of supplementary data files

Data files describing the E. coli model and the analysis of metabolic strategies therein. The files can be

downloaded from github: https://github.com/liebermeister/enzyme-flux-cost-minimization.

• Ecoli_Central_Metabolism.xlsx – reactions, metabolites, stoichiometry matrix and EFMs

• Ecoli_Central_Metabolism_SBML.xml – SBML file of the central metabolism network of E. coli

• Kinetic_Constants_Original.xlsx – kinetic parameters obtained from literature with references

• Kinetic_Constants_Original.tsv – (averages of the) literature data; input for parameter balancing

• Kinetic_Constants_Balanced.tsv – balanced parameter values (used in the model)

• Ecoli_Model_Data_NEOS.zip – multi-file NEOS input for optimization of enzyme levels

• Ecoli_Model_Data_NEOS_SBtab.csv – single-file (SBtab) NEOS input for enzyme level optimization

• GAMS_run_files.zip – GAMS code files

• Sensitivities_Kcat.csv – cost and growth sensitivities of the kcat values under standard conditions

• Sensitivities_Keq.csv – cost and growth sensitivities of the keq values under standard conditions

• Sensitivities_KM.csv – cost and growth sensitivities of the KM values under standard conditions

• Anaerobic_EFM_Results.csv – results for relevant EFMs in anaerobic conditions

• Anaerobic_Enzyme_Abundance.csv – individual enzyme abundances for all relevant EFMs in anaero-

bic conditions

• Aerobic_EFM_Results.csv – results for relevant EFMs in standard aerobic conditions

• Aerobic_Enzyme_Abundance.csv – individual enzyme abundances for all relevant EFMs in standard

aerobic conditions
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