S2 Illustrated methods

This document contains additional figures that illustrate the processes and models described in the Methods section of the main manuscript.

Sampling site patterns

maximal blocks characterized by any column

Figure A: Each position in a matrix representation of a six-way EPO alignment can be classified as one of the following: an unannotated nucleotide coded as **d**; an unannotated gap coded as **g**; the *i*th solo-LTR having identifier *id* and coded as **s**-*i*-*id*; or the *i*th partial or full-length ERV having identifier *id* and coded as **c**-*i*-*id*. We partition classification matrix A into l adjacent submatrices so that all columns in submatrix $A^{(i)}$ are identical and so that two consecutive submatrices differ.

Figure B: The sequence of the first columns of all submatrices of at least 50 columns is referred to as the sequence of pre-patterns P.

Figure C: To obtain site patterns to place on a phylogeny we parsed the set S of subsequences of pre-patterns that are (i) anchored by host DNA at either end, that (ii) contain a spanning solo-LTR or full-length ERV, and that (iii) contain a spanning gap.

Site patterns:
$$U = \{\cdots, \begin{bmatrix} x \\ x \\ x \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} x \\ x \\ x \\ 0 \\ 0 \\ 0 \end{bmatrix}, \cdots, \}$$

Figure D: The parsed pre-patterns from S are converted to site patterns using a heuristic method. These site patterns can then be analysed using a phylogenetic insertion and deletion model.

Figure E: Consider an insertion that occurred in a common ancestor of the human, chimpanzee, and gorilla. To calculate the probability of observing solo-LTRs in all present day primates we must consider each of the above three deletion scenarios.

Exponential deletion model

$$\begin{split} h & c \quad g \\ hc & \mathbf{x} \quad \mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) f_x(x) \, \mathrm{d}x \\ hcg & \operatorname{Pr}(\mathbf{0} \to \mathbf{x}) = \int_0^t \frac{1}{t} \left[1 - e^{-\psi(t-t_i)} \right] \, \mathrm{d}t_i = 1 + \frac{e^{-\psi t} - 1}{\psi t} \\ \mathbf{0} & \mathbf{x} \\ \mathbf{1} & \mathbf{t} \end{split}$$

Figure F: Under an exponential model, the probability that an ERV is deleted on an insertion branch has an analytical solution. (The insertion time t_i is uniformly distributed because we assume ERVs arrive according to a Poisson process.)

$$h \begin{bmatrix} c \\ x \\ hc \\ 1 \\ hcg \end{bmatrix}^{g} \operatorname{Pr}(1 \to x) = 1 - e^{-\psi(t_{2} - t_{1})} \qquad h \begin{bmatrix} c \\ 1 \\ hc \\ 1 \\ hcg \end{bmatrix}^{g} \operatorname{Pr}(1 \to 1) = e^{-\psi(t_{2} - t_{1})}$$

$$h \begin{bmatrix} c \\ 1 \\ hc \\ 1 \\ hcg \end{bmatrix} \qquad Pr(1 \to 1) = e^{-\psi(t_{2} - t_{1})}$$

Figure G: Under an exponential deletion model, on a post insertion branch we need to be able to calculate two kinds of probabilities: the probability that an ERV is deleted (converted to a solo-LTR, left); and the probability that an ERV remains in full-length form (right).

Weibull deletion model

$$\begin{array}{c|c} h & c & g \\ hc & \mathbf{x} & \\ hcg & \\ 0 & \mathbf{x} \\ \hline \\ hcg & \\ 0 & \mathbf{x} \\ t_i & t \end{array} \end{array} \xrightarrow{\mathbf{Pr}(\mathbf{0} \to \mathbf{x})} = \int_0^t \frac{1}{t} \left[1 - e^{-\left[\frac{t-t_i}{\psi}\right]^{\omega}} \right] \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \right] \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \right] \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right) - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right] - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right] - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right] - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right] - \Gamma \left(\frac{1}{\omega}\right) \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right] \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left(\frac{1}{\omega}, \left(\frac{t}{\psi}\right)^{\omega} \right]}{\omega t} \, \mathrm{d}t_i = 1 + \frac{\psi \left[\Gamma \left$$

Figure H: Under a Weibull model, the probability that an ERV is deleted on an insertion branch also has an analytical solution. (The insertion time t_i is uniformly distributed because we assume ERVs arrive according to a Poisson process.)

$$h \begin{bmatrix} c & g \\ hc & 1 \end{bmatrix}^{d} \quad \Pr(1 \to 1|t_i) = \int_0^t \frac{1}{t} \left\{ \frac{e^{-\left[\frac{t_2 - t_i}{\psi}\right]^{\omega}}}{e^{-\left[\frac{t_1 - t_i}{\psi}\right]^{\omega}}} \right\} dt_i$$

$$hcg \quad 1 \longrightarrow 1$$

$$t_1 \longrightarrow t_2$$

Figure I: Under a Weibull model, the probability that an ERV is deleted on a post insertion branch is obtained using the conditional reliability function.