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S6 Supporting information to Inherent network compensation capability

through synaptic sampling

Here we describe the method that was used to evaluate the reconstruction performance, and provide further

details to the emergent assembly sequences among the hidden neurons.

S6.1 Evaluating the reconstruction performance

The reconstructed visual stimuli were generated by producing an auditory stimulus via the xA neurons and

evaluating the corresponding activity of visual zV neurons. A sample auditory stimulus from the test set was

randomly chosen and spike patterns were generated as for the training session (see main text). The resulting

spike trains from the zV neurons were smoothed with the EPSP kernel (28). The current strengths of the

feedforward synapses were then weighted by these smoothed responses, evaluated 300ms after stimulus onset.

Fig. 5B shows two example reconstructed stimuli. The pixel values were rescaled to the color range of the

images.

The reconstruction performance was assessed by the performance of linear classifiers trained on the response

of zV neurons. The classifiers were trained on 50 samples of reconstructed visual stimuli of each digit class,

generated by producing each time fresh Poisson trains in the xA neurons with time-varying firing rates according

to the spoken digit samples, using Matlab’s build-in naive Bayes classifier method. Additional 50 samples of

each class were then used to evaluate the reconstruction performance (number of correctly labeled samples).

The values shown in Fig. 5E are mean values over 20 classifiers, trained and tested for independently generated

Poisson spike trains for xA neurons as described above.

S6.2 Assembly sequence analysis

To further evaluate the emergent activity patterns and connectivity in the network of hidden neurons we

focused on the emergent assembly sequences within the hidden neuron (see e.g. [1] for experimental data on

assembly sequences). Affiliation of neurons to assembly sequences was assessed through the PETH (see main

text). PETHs were computed for both digits over 100 trial responses from all zA and zV neurons. Neurons were

assigned to the assembly sequence corresponding to the digit for which the neuron showed the maximum PETH

amplitude. Neurons for which the maximum was outside the time interval [50ms, 450ms] after stimulus onset,

were excluded from the analysis (not assigned to an assembly sequence). We refer to the set of neurons that

take part in these assembly sequences in the visual and auditory populations zA and zV as V (1), A(1) for digit

1, and V (2), A(2) for digit 2. We find that synaptic plasticity generates associations between corresponding
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Figure S2: Emergent assembly sequences and functional connectivity in a simplified model of
multi-modal sensory integration. (A) Only a fraction of the structurally possible connectivity (all to all)
emerges as functional connectivity after learning in the network shown in Fig. 5 of the main text. Connection
probabilities (number of functional connections normalized to the number of possible connections) are shown
between input and hidden neurons and between hidden neurons that are recruited for assembly sequences. The
colors of the bars match the direction of the connections (colored arrows). Neurons from assembly sequences
that encode the same digit class are more likely to be connected after learning. (B) Neurons within the auditory
assembly sequence A(2) fire in a characteristic sequential order. PETH evaluated at different training times
before the lesions are shown. Neurons are sorted by the time points of highest activity (black dots) after 80
minutes (top) and 160 minutes (bottom) of learning (plot used for sorting is highlighted by red border). The
sequential firing order changes during prolonged learning.

components of the assembly sequences in the visual and auditory ensemble, (i.e., between V (1) and A(1), V (2)

and A(2)) in spite of the fact that synaptic connections are asymmetric in this model, as in most biological

networks of neurons. Fig. S2A shows the connection probabilities between the pairs of assembly sequences after

160 minutes of training. Assemblies that encode correlated stimuli are more likely to be connected.

In Fig. S2B we study the drift of the preferred firing time of neurons within an assembly sequence that takes

place on a larger time scale throughout learning, due to the stochastic term in the learning rule. The auditory

assembly sequence A(2) is analyzed. Neurons within this assembly sequence fire in a specific order, as in [1].

Our learning model predicts that this sequential order changes during larger periods of learning. The result

shown in Fig. S2B is qualitatively similar to the data reported in [2] for a different type of learned neural code

(place cells). The time scale of these fluctuations can be regulated through the parameter b (learning rate) in

the synaptic sampling rule (3). We had chosen here a faster time scale of hours (rather than days, as in [2]) in

order to achieve tractable computer simulation times.

S6.3 Comparison to deterministic STDP

Here we compare the synaptic sampling learning to the approximate spike-based expectation-maximization

(EM) algorithm for hidden Markov models implemented through spiking neurons, which was introduced in [3].

The algorithm is a deterministic STDP-like update scheme and realizes the data-dependent drift term of the

synaptic sampling rule (11). More precisely we used deterministic updates of the form

dwi = bN S(t) (xi(t) − α ewi) (S1)

for the lateral and feedforward synaptic weights of the WTA networks.
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Figure S3: Comparison between synaptic sampling and approximate HMM learning. (A) The
stimulus reconstruction performance of synaptic sampling (blue) and the approximate HMM learning (red).
(B,C) Comparison of the lateral synaptic weights that result from synaptic sampling (B) and approximate
HMM learning. Insets on the bottom show the histograms over the synaptic parameters.

We trained a network using the the approximate HMM learning rule (S1) on phase 1 of the learning task

in Fig. 5. The results are compared in Fig. S3A. Approximate HMM learning was not able to learn this task

accurately which results in a low reconstruction performance throughout the whole learning time. In Fig. S3B,C

we compare the matrices of synaptic weights that result from the two algorithms. The color ranges are rescaled

to the min/max values of the synaptic weights for each plot. Note that learning rule (S1) – unlike synaptic

sampling – can produce negative synaptic weights. Due to the prior distribution over synaptic parameters

the representation learned by synaptic sampling is much sparser and associations are more pronounced which

allows for a more reliable recall of input stimuli.

S6.4 Impact of the temperature on the reconstruction performance

In Fig. S4 we analyze the impact of the temperature (parameter T in equation (12) of the main text) on the

reconstruction performance in the last phase of the learning task in Fig. 5 (all lateral synapses are removed).

The speed of the regrowth of retracted synapses is determined by the prior and the random fluctuations due

to the Wiener process. Therefore we found that the temperature parameter T has a large impact on the time

it takes until the network recovers from the lesion.

With a temperature of zero (deterministic updates) the network requires significantly more time until the

reconstruction probability starts to increase. The prior that is close to zero only very slowly drives a sufficient

number of synapses above the threshold. With increasing temperature the speed to recover from the lesion

increases. For too large temperatures (e.g. T = 8) the performance degrades since the network diffuses quickly

from solutions. The optimal value for the temperature was found to be between T = 2 and T = 4 for this

particular learning problem (see Fig. S4).
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Figure S4: Comparison of the reconstruction performance of networks with different learning
temperatures T . The plots show mean values over 20 individual trial runs as the one shown in Fig. 5.
Reconstruction performance was evaluated in an 8 minute interval. Plots show linear interpolations between
these values.
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