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Under which conditions do oscillations induce a transition from a regime of non-robust to robust
synchrony propagation? In particular, what is the (minimal) amplitude or the degree of synchrony
required that allow for robust signal propagation? To answer this question, we investigate the
emergence of oscillation-supported propagation in FFNs with non-additive couplings analytically.
We employ a self-consistency approach (cf. also methods introduced in [30, 31, 45]) to derive an
approximation of the iterated map for the average size of a synchronous pulse that propagates
along the layers of an FFN. In particular, we �nd a scaling law for the amplitude of the external
oscillations that enable stable propagation as a function of the system parameters and the dendritic
nonlinearity.

Synchronous spiking of neurons in some layer causes
a synchronous input to the neurons of the next layer.
In the presence of oscillations of suitable frequency, e.g.,
νs ≈ νnat, this input may be supported by inputs from
the external oscillations. Then the total excitatory input

I = Ie + Ic (S1.1)

is the sum of inputs arising from external oscillations,
Ie, and from the preceding layer, Ic. In networks with
non-additive coupling, the spiking probability psp due to
a synchronous input I below the dendritic threshold Θb

is typically much smaller than due to a suprathreshold
input (cf. Figure 2a). We thus assume that only neurons
that receive a suprathreshold input (I > Θb) generate a
spike with �xed probability p∗, i.e.,

psp (I) :=

{
p∗ if I ≥ Θb

0 if I < Θb

. (S1.2)

Thus, neurons process synchronous signals like simple
threshold units, i.e., they generate no response for sub-
threshold inputs and a �xed response for suprathreshold
inputs. For clarity of presentation, we assume that the
�ring probability p∗ is �xed. In general it might be re-
duced by inhibitory input, but the extension is straight-
forward and leads to similar results (cf. also [41]).
The timing of somatic spikes initiated by dendritic

spikes is highly precise, i.e., the temporal distribution
of somatic spikes triggered by dendritic ones is very nar-
row (cf. Figure 3a), in the sub-millisecond range (cf. also
[29]). In particular, the jitter in time is typically much
smaller than the dendritic integration window ∆T s. This
let us assume that a synchronous pulse packet in one layer
causes synchronous spiking within a time interval smaller
than ∆T s in the next layer and so on.
In the following we calculate the probability density

function fI(I) for the total excitatory input I to the neu-
rons of a given layer conditioned on (i) the number of

synchronously spiking neurons in the previous layer, gin,
and (ii) the amplitude of external oscillations, Ne. Then,
the average number of synchronously spiking neurons in
the considered layer is

gout = ω

∫ ∞
0

psp(I)fI(I|gin, Ne)dI (S1.3)

= ωp∗
∫ ∞

Θb

fI(I|gin, Ne)dI. (S1.4)

First we consider the input from the previous layer.
Given the random topology of the FFN, the probability
that a neuron receives exactly k (out of the maximal
number gin) inputs is binomially distributed,

p (k) =

(
gin

k

)
(pex)

k
(1− pex)

gin−k
. (S1.5)

For a su�ciently large number gin of neurons participat-
ing in the synchronous pulses, we can approximate the
binomial distribution (S1.5) by a Gaussian distribution
and thus the excitatory synchronous input follows

Ic = kεc ∼ N
(
µc, σ

2
c

)
(S1.6)

with mean

µc = εcg
inpex (S1.7)

and standard deviation

σc = εc
√
ginpex (1− pex). (S1.8)

Likewise, the number of excitatory inputs l each neu-
ron receives within one oscillation period from the exter-
nal (virtual) neuron population is binomially distributed,
l ∼ B (Ne, p

ext
ex ). The arrival times are drawn from a
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FIG. S1.1: Map yielding the temporal evolution of the average size of a synchronous pulse in an FFN with

non-additive coupling (cf. Equation S1.17; ω = 200, pex = 0.05, Θb = 8.65nS). (a) Ne =0 (absence of external oscillations),
di�erent colors indicate di�erent coupling strength εc. (b) The coupling strength εc = 1.0nS is �xed and external oscillations
(pextex = 0.05, εextp = 0.3nS, σs = 0ms) are present, di�erent colors indicate di�erent Ne. With increasing (a) connection strength
εc or increasing (b) oscillation amplitude Ne, two �xed points emerge by a tangent bifurcation. This bifurcation point marks
the transition from a regime where no propagation is possible to a regime where persistent propagation of synchrony can be
achieved (cf. also Figure 2b,c).

Gaussian distribution with standard deviation σs. We
assume that propagation of synchrony in the FFN and
the external oscillations are in-phase. Then for σs > 0
the fraction

p∆T s =

∫ ∆T s

2

−∆T s

2

1√
2πσs

exp

[
−1

2

( τ
σs

)2
]
dτ (S1.9)

= Erf

(
∆T s

√
8σs

)
(S1.10)

of the additional inputs arrive within the dendritic in-
tegration window ∆T s and can support the generation
of dendritic spikes. For σs = 0, all inputs are received
synchronously and thus p∆T s = 1; for non-zero σs the
e�ective size of the external oscillation (i.e., the e�ective
average number of neurons that may contribute to the
generation of dendritic spikes) is

N e�
e = p∆T sNe, (S1.11)

and the number of excitatory inputs from the oscilla-
tory neuron population is distributed according to l ∼
B
(
N e�

e , pextex

)
.

For su�ciently largeN e�
e , one can again use a Gaussian

approximation which yields

Ie ∼ N
(
µe, σ

2
e

)
(S1.12)

with

µe = εextp N e�
e pextex and σe = εextp

√
N e�
e pextex (1− pextex ).

(S1.13)
The sum of the inputs Ie and Ic is then also approxi-
mately Gaussian distributed,

I = Ie + Ic ∼ N
(
µ, σ2

)
, (S1.14)

with mean µ = µe + µc and variance σ2 = σ2
e + σ2

c , i.e.,

µ = εextp N e�
e pextex + εcg

inpex (S1.15)

and

σ =

√(
εextp

)2
N e�
e pextex (1− pextex ) + ε2

cg
inpex (1− pex).

(S1.16)
Using the distribution (S1.14) of I allows us to specify

the iterated map for the average size of a synchronous
pulse according to Equation (S1.4),

gout =
ωp∗

2

(
1 + Erf

[
µ−Θb√

2σ

])
, (S1.17)

where the size of the initial pulse packet gin appears as
argument of µ and σ (see Equations S1.15 and S1.16).
The �xed points G∗ = gout = gin of Equation (S1.17)

determine the stability of the propagation of a syn-
chronous pulse. With increasing coupling strength two
�xed points emerge via a tangent bifurcation (Figure
S1.1a; cf. also Figure 2b,c), and external oscillations have
a similar e�ect (Figure S1.1b). This transition enables
robust propagation of synchrony, and the external oscil-
lations thus reduce the critical connection strength ε∗NL
(i.e., the minimal coupling strength for which robust sig-
nal propagation is possible).
For a given network setup, Ne = N∗e speci�es the min-

imal size of the external oscillation which enables stable
propagation of synchrony. It can be found by numerically
determining the bifurcation point of Equation (S1.17).
Additionally, one can derive a scaling law for N∗e based
on two observations:

1. In the absence of external oscillations (Ne = 0),
the position of the bifurcation point of Equation
(S1.17) depends on the coupling strength εc and



3

the dendritic threshold Θb only via the quotient

κ :=
Θb

εc
, (S1.18)

which is the number of spikes from the preceding
layer that are needed to elicit a dendritic spike.
Equation (S1.17) reads

gout =
ωp∗

2

(
1 + Erf

[
ginpex − κ√

2ginpex (1− pex)

])
. (S1.19)

For a given network setup, the connection prob-
ability pex, group size ω and spiking probability
p∗ (which is determined by the ground state and
the parameters of the dendritic spike) are �xed.
Thus the bifurcation point where the �xed points
G∗1 = G∗2 = gout = gin appear by a tangent bi-
furcation, depends solely on κ (the only unknown
quantity). Consequently, there is some κ∗ = κ
specifying this bifurcation point, i.e., the transition
point from non-propagating to propagating regime
depends just on the number of spikes necessary to
elicit a dendritic spike. The actual value κ∗ can
be found either by numerical simulation of the sys-
tem, numerical solution of Equation (S1.19) or by
the analytical methods introduced in [30, 31].

2. The main in�uence of external oscillatory inputs is
an e�ective reduction of the dendritic threshold Θb,
such that the properties of the system described
above can be approximated by a network without
external oscillatory input, but with a reduced den-
dritic threshold Θe�

b < Θb: In the setups considered
the additional oscillatory input contributes to the
generation of dendritic spikes, but the main con-
tribution arises from the input arriving from the
previous layer (the signal to be propagated), i.e.,
µe < µc. Moreover, the feed-forward connections
εc are enhanced compared to the remaining excita-
tory couplings, εextp < εc. Thus the total variation

of the input σ = σ2
e + σ2

c (cf. Equation S1.16) is
dominated by the contribution σ2

c of the input from
the previous layer,

εextp µe

(
1− pextex

)
< εpµc (1− pex) (S1.20)

σ2
e < σ2

c . (S1.21)

In particular for εextp � εc the contribution of the
external inputs to the total variation of the input
becomes negligible, i.e., σ2

e � σ2
c , and the argument

of the error function in Equation (S1.17) simpli�es
to

µ−Θb√
2σ

=
µc + µe −Θb√

2 (σ2
c + σ2

e )
≈ µc −Θe�

b√
2σc

(S1.22)

where we de�ned the e�ective dendritic threshold

Θe�
b := Θb − µe. (S1.23)

The above observations indicate that the bifurcation
point is found for some constant

κ∗ =
Θe�
b

εc
=

Θb − µe
εc

, (S1.24)

such that the minimal size of the external oscillations
N∗e , which enables propagation of synchrony, is given by
(using Equations S1.13, S1.11 and S1.10)

N∗e = Erf

[
∆T s

√
8σs

]−1
Θb − εcκ∗

εextp pextex

. (S1.25)

Equation (S1.25) indicates that N∗e changes linearly with
the coupling strength εc (cf. Figure 4 and 5). Further it is
inversely proportional to the coupling strength between
the external oscillatory population and the neurons of
the FFN, N∗e ∝ 1/εextp , and the dependence of N∗e on the
temporal spread σs of the external oscillations is deter-
mined by the prefactor 1/p∆T s .
The above results are derived for isolated FFNs. How-

ever, we show and discuss in Supporting Material Text
S2 that the results hold in good approximation also for
FFNs that are part of recurrent networks.


