SUPPLEMENT
Microvessel density (MVD) is a measure of the number of vessels per regions of interest (ROI).  Histology slides of both normal pancreas and tumor tissue (Figure S1) were examined.  The MVD was estimated by evaluating various ROI of pancreatic cells from slides stained for Factor VIII.  Microvessels with approximate circular diameters were identified within an ROI at a magnification of either 40x (1.21 m/pixel) or 100x (0.48 m/pixel) (Figure S1D).  The pixels were converted to metric unit lengths and the sum of the microvessel cross-sectional areas was calculated as a ratio to the ROI area, with the resulting microvessel density obtained as a percentage.  
Calculation of tumor cell density.  Within a given circular ROI, the cell number was counted and divided over the ROI area.  This cell density was averaged over 5 separate ROIs to yield an estimated packing density of 0.761.  Figure S2 illustrates how cells were identified within an ROI.  A sample calculation is as follows:
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Calculation of tumor size from bioluminescence. The bioluminescence signal was quantified from the orthotopic xenografts after injection with luciferin.  On Day 0, a specified number of MiaPaCa-2 or S2-VP10 tumor cells were orthotopically injected into the mouse pancreas, followed by luciferin injection and tumor imaging.  Day 0 provided a correlation of the bioluminescent signal (photons/s) to the cell concentration, with the lowest concentration of cells providing the most reliable correlation.  By day 14 and day 7, the MiaPaCa-2 and S2-VP10 tumor cells, respectively, had both taken root and grown to a typical size of ~1.5 mm radius tumor.  A correction factor of the photon/sec/cell correlation was determined to adjust the bioluminescent emission signal to account for the tumor size calculation to the typical diameter of 3 mm.  Table S1 summarizes a sample set of the bioluminescent emission data for untreated mice at day 7 post-orthotopic injection of S2-VP10 tumor cells.  The median value was used to calculate the tumor radius.  Following is a sample calculation showing how the correction factor and tumor radius were obtained.  
Calculation of bioluminescent emission signal correlation to cell concentration on Day 0:

[image: image2.png]7.85 x 10° photons 1 _ photons
x — =785x10
s 1 x 10° injected SsVP10 cells s cell





Calculation of correction factor on Day 7 with known tumor diameter of 3 mm:

[image: image3.png]%nu.s 'mm S2VP10 tumor radius)®

137 x 107 photons s cell
s 7.85 x 103 photons

X %ﬂ'(7.ﬂﬂx 1073 mm S2VP10 cell radius)®




[image: image4.png]0.24 correction factor




Calculation of tumor radius from median of bioluminescent emission data:
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Mathematical Model
We summarize the formulation advanced by Cristini et al. (2003) [21] and further developed in [18,22-24] to illustrate the basic model applied in this integrated experimental/computational approach to study pancreatic tumor growth and treatment response.  The quasi-steady state diffusion equation for the concentration (x,t) of cell substrates is [25-27]:
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where D is the diffusion coefficient and  is the rate at which cell substrates are added to the tumor domain   The substrates diffuse through the extracellular matrix (ECM), as well as within cells, and are uptaken by tumor cells.  The assumption of steady state diffusion [26] is reasonable considering that the rate of diffusion is much smaller (~1 min-1) than the rate of cell proliferation (~1 day-1).  The rate  is given by [21]:
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This rate includes cell substrates from the vasculature 
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as a source, and the uptake by the cells 
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as a sink.  The rate λB is the substrate vasculature-tissue transfer rate, σB is the concentration of substrates in the vasculature, and λ is the rate of substrate consumption by tumor cells.  

The local rate of tumor volume change
 as a function of velocity u is obtained by modeling the tumor as an incompressible fluid [21]:




(10)

The cell proliferation rate λP is defined as [21]:
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where b is a measure of mitosis and [image: image19.png]


 is the rate of apoptosis, both assumed to be uniform.

The velocity u is assumed to follow Darcy’s law [48]:
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where the cell mobility μ is assumed constant and 
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is the pressure in the tumor domain [image: image23.png]
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The boundary condition for the cell substrate concentration at 
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  is , where 
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is the uniform concentration outside the tumor volume [21].  The characteristic mitosis rate is a function of this concentration:
λM = bσ∞










(13)
The tumor pressure is assumed to satisfy the Laplace-Young boundary condition
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, where γ is the surface tension related to cell-cell adhesive forces, and Κ is the local total curvature [21].  
The tumor velocity 
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 normal to the tumor boundary is [21]:
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The vasculature is assumed to be uniform in this simplified model, and thus the tumor growth is associated with a bulk source of oxygen, nutrients and growth factors [21].  Hence, the growth is limited by the diffusion of cell substrates through the tumor tissue.
An intrinsic length scale in the model is revealed by Eqs.8-9 [21]:
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By non-dimensionalizing the lengths with LD one obtains from Eq.12 and the pressure Laplace-Young boundary condition an intrinsic relaxation time scale 
[image: image33.wmf]1

R

l

-

 corresponding to 
[image: image34.wmf]3

RD

L

lmg

-

=

 [21]. This rate, associated to relaxation mechanisms such as surface tension γ and cell mobility μ, is used to non-dimensionalize the simulation time.
The dimensionless parameters A and G and the modified concentration [image: image36.png]


 and pressure 
are specified such that [21]:
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The dimensionless parameter B denoting the extent of vascularization becomes [21]:
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As described in [21], the non-dimensional equation for [image: image43.png]


 (Eq.1) with boundary condition 
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.  The non-dimensional equation for p (Eq.2) with boundary condition 
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 is obtained from Eqs.10-12 and 
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.  The non-dimensional normal velocity V of the tumor-host interface (Eq.3) is obtained from Eq.14.  
The bars denoting non-dimensionalized values are omitted in the Methods.  The main model parameters and their associated biological meaning are summarized in Table S2.
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