Skip to main content
Advertisement

< Back to Article

Dynamic Excitatory and Inhibitory Gain Modulation Can Produce Flexible, Robust and Optimal Decision-making

Figure 6

Excitatory or inhibitory gain modulation alone results in restrictive neural dynamics.

(A,B) Stability diagrams of a single selective excitatory population as a function of excitatory gain (A) and inhibitory gain (B). Arrows in (A) and (B) show direction of change as or varies, respectively. Vertical dashed lines partition regimes of in (A) and in (B), respectively. A regime can have a single symmetric stable steady state, which is either low (LSS) or high (HSS), or multiple stable steady states: one symmetric and two asymmetric, with two asymmetric unstable steady states. The symmetric steady state can be low (LMS) or high (HMS). Or it may have a symmetric unstable steady state with asymmetric stable and unstable steady states. This constitutes the decision-making (DM) regime. (C,D) Sample activity timecourses showing either no winner-take-all behaviour (C) or divergence at low firing rates, when the excitatory (inhibitory) gain is increased (decreased) in isolation (C), or when the excitatory (inhibitory) gain is decreased (increased) in isolation (D), respectively.

Figure 6

doi: https://doi.org/10.1371/journal.pcbi.1003099.g006