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Figure S1. Homologous Recombination (HR) DNA repair pathway. The substrate for 

homologous recombination (HR) is RPA-covered ssDNA, as it occurs at processed double-strand 

breaks (DSB) (left) or in replication-associated gaps (right). The ensuing pathways steps are 

elaborated for DSB repair, but analogous steps exist for gap repair. The proteins from the yeast S. 

cerevisiae and humans catalyzing individual steps in the forward (green shaded) and backwards 

(red shaded) reactions are indicated. The designation of the substrate, intermediates, and 

products, as well as reaction steps (k1, k-1, k2, k-2, k3) relating to the models in Figures 3, 4, 6, and 
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Figure S2 in Text S1 are indicated in light blue with grey shading. It is presently unclear, which 

of the intermediates in the srs2 rad54 double mutant, Rad51-ssDNA filament or D-loops or both, 

are toxic but this has no effect on the present discussion. The reversion of extended D-loops 

channels recombination events to synthesis-dependent strand annealing (not depicted in Figure S1 

in Text S1). In this case, the displaced invading strand anneals with the second end of the DSB to 

always generate non-crossover outcomes. DSBs can also be repaired by non-homologous 

endjoining (NHEJ) or single-strand annealing (SSA), whereas replication gaps could be 

processed by translesion synthesis (TLS) or fork regression (FR). These compensatory pathways 

are labeled as k3 in the modeling diagrams. 
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Figure S2. Abstract representation of the recombinational DNA repair pathway with a final 

irreversible step. A modification of the simplest toy model (Figure 3) introduing a last 

irreversible step from Figure S1 in Text S1 that enables kinetic proof-reading. In this case the 

repair product P is irreversibly transformed to the final repaired state R. The scheme represents a 

simplified version of the pathway depicted in Figure S1 in Text S1 using the same abbreviations. 

Dynamic states S, I, P represent DNA damage substrate (S), toxic intermediate (I), and the 

product of repair (P). F1 (e.g. Rad51), F2 (e.g. Rad54), R1 (e.g. Srs2), R2 (e.g. Mph1) are 

enzymes in the main pathway, and F3-EC represent enzymes in the compensatory pathway. 
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  Model Figure 3    Model Figure S2 in Text S1 

  without irreversible last step  with irreversible last step 

 

 

Figure S3. Illustrating the difference between the simplest toy model (Figure 3) and the 

model with a last irreversible pathway step (Figure S2 in Text S1). The simulation was 

performed for the F2ê F1é scenario (Figure 6, line 13). Simulations for the toy model are 

shown on the left, simulations for the model with a last irreversible step are shown on the right. 

Top: The dynamics of the two models are practically indistinguishable in the scale of 2 time 

units. Bottom: The dynamics of the two models is very different in the scale of 100 time units. 

The plots are insensitive to several order of magnitude changes in the value of the parameter k4. 

Dynamic states S, I, P, R represent DNA damage substrate (S), toxic intermediate (I), and the 

product of repair (P) and the final repaired state (R). Role of the last irreversible step in the 
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model: The difference between two models of homologous recombination DNA repair presented 

in Figure 3 and S2 is the presence of an irreversible step to a final repaired product in the latter. In 

the case of DNA repair, this might be justified: the enzymes regulating the backward reactions 

should not be able to cause DNA damage. However, in other contexts, the relevance of a last 

irreversible step might be less obvious (see Discussion and Figure 8). The presence of a last 

irreversible step modifies several but not all cell fates in Figure 6 (verified by comparing 

numerical simulations for the two models and varying the parameter k4). First, the normal wild-

type models are not affected. Second, the bpSL and wrpSL scenario are not affected. Those 

genetic scenarios whose cell fates can be reversed in the presence of the last irreversible step are 

shown as hexagons in Figure S4A in Text S1 and indicated in Figure S4B in Text S1. In these 

cases, the effect of timing starts playing the most crucial role and the simple analysis of only 

steady state values is not sufficient. At a short time scale, the dynamics of the two models can be 

practically indistinguishable, while being very different at longer time scales (see above). In 

particular, this is the case for scenario 8 (F2↓) and scenario 13 of Figure 6 (F2↓F1↑) (see also 

Figure S4 in Text S1). Thus, for making predictions from these simulations, one needs to estimate 

more precisely the Tdam and Ttox delays (time intervals during which the DNA damage and the 

toxicity can be tolerable) that become crucial parameters in the cell fate decisions. 
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Figure S4. Relationships between wild type, single and double mutant model modifications. 

The probability of complete repair of DNA damage can serve as a measure of fitness for the 

different genetic models. For genetic scenarios affecting two genes the strength of the interaction 

between knock-outs or overexpression conditions are measured by the deviation from the 

multiplicative model ε = Wab – WaWb, where Wa and Wb are the fitness values for single condition 
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(knockout or overexpression) and Wab is the fitness with a knockout and overexpression. A) The 

nodes correspond to the simulations from Figure 6. The node border style shows viability as 

defined from the steady state of repaired DNA (value Ps, formula (4)). Hexagonal nodes denote 

those lethal scenarios which can be rescued by the addition of the last irreversible pathway step 

(see Figure S2 in Text S1). Edges of red color show strong negative and of green color strong 

positive genetic interactions; B) A summary of numerical and label attributes for the simulations 

shown in A). They show that in the examples from Figure 6 there are three cases of strong 

negative interactions (between-pathway synthetic lethality F1↓ EC↓, within-reversible-pathway 

synthetic lethality F2↓R1↓ and within-pathway synthetic dosage lethality F2↓F1↑) and one 

example of strong positive interaction (synthetic dosage interaction F2↓ R1↑).  
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S
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5
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This is a case of synthetic dosage 
synthetic lethality (SDL) leading to the 
inefficiency of the first pathway step, as 
in Figure 6, row 4. 

2 Normal Robust 

(NR) 

or 

Normal Fragile 

(NF) 

Death 

from 

Toxicity 

(DT) 

F2↓   
and 

EC↓   

S

I

P
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0.1

  
 

This is an alternative example of parallel 
pathway synthetic lethality (compare to 
Figure 7, row 14) which mechanism of 
action is analogous.  
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P
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This is a case of synthetic dosage 
synthetic lethality (SDL) equivalent by 
its effect to the scenario in Figure 6, row 
5.  
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DT depending on the ratio of the R1 and 
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Double overexpression of R2 and F1 
leads to the cell death by the mechanism 
equivalent to the scenario shown in 
Figure 7, row 13. 

 

Figure S5. Additional modeling scenarios extending Figure 6. Pathway states depicted as Normal states as Normal Robust (NR) 

and Normal Fragile (NF); Mutant states as death from DNA damage (DD) and death from toxicity (DT). Dynamic plots show 

prediction of model for evolution of substrate (S), intermediate (I) and product (P) amounts over time corresponding to the choice of 

kinetic parameters shown on the Model diagram. (X-axis)-time, (Y-axis)-substances level. F1, F2, R1, R2, and EC refer to the 

enzymes catalyzing the two forward and two backwards reactions as well as the compensatory pathway, respectively (see Figure 2).     

(↓  )-complete knock-down or mutational loss of function; (↑  )-over-expression.  



 

 12 

 

Figure S6. Potential examples of within-reversible-pathway Synthetic Lethality (wrpSL). A) 

Reduced scheme of wrpSL indicating a first reversible reaction and a second dependent reaction 

making specific predictions about synthetic negative or aggravating interactions of mutations 

(loss of function or hypomorphs) and synthetic positive or alleviating interactions when the 

enzyme of the backwards reaction is overexpressed. The reversibility of step 2 is not required for 

wrpSL. S: substrate, I: intermediate, P: product. A red cross indicates a mutation and an arrow 

with increased weight means overexpression. B) Genetic interaction between CDC5 (Polo kinase) 

and CDC14 (FEAR complex phosphatase) [1,2]. Cdc5 Polo kinase is dependent on prior 

phosphorylation (priming) by other kinases, often cyclin-dependent kinases (CDK), using its Polo 
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domain, a phospho-epitope binding motif, to bind to the primed protein substrate [3]. The 

phosphatase Cdc14 also functions in cell cycle regulation in conjunction with Cdc5 [4]. 

Mutations in CDCD14 and CDC5 were shown to have a synthetic negative interaction, an 

observation not [1] easily explained by a mechanism proposing that Cdc5 and Cdc14 target the 

same residue for phosphorylation or dephosphorylation. Such a mechanism would predict mutual 

suppression. The wrpSL mechanism, however, is consistent with the observed negative 

interaction. Importantly, this system also fulfills a further prediction of wrpSL, in that Cdc14 

overexpression shows an alleviating interaction with a cdc5 mutation [2]. This example highlights 

that wrpSL can also be applied to essential pathways with hypomorphic mutations (Figure 5). 

The wrpSL mechanism involving a toxic intermediate is also consistent with the model and 

interpretation of the finding that overexpression of certain substrates (Pho4, Gsy1, Gsy2, Gcn4) 

shows an aggravating effect in a deletion of their kinase PHO85 [5,6]. C) Genetic interactions 

between the SUMO-targeted Ubiquitin ligase (StUbL) encoded by SLX5-SLX8 with ULP1 

(desumoylation protease) or NUP60 (regulator of desumoylation) [7-12]. StUbLs are enzymes 

that ubiquitylate their substrates being targeted by prior sumoylation [13]. In yeast, Slx5-Slx8 

constitute a heterodimeric StUbL [14], and both genes show a negative interaction with the 

SUMO-protease Ulp1 and the desumoylation regulator Nup60, a protein associated with the 

nuclear pore complex [7-12] (see Figure 8A, D). This genetic interaction could identify the 

specific SUMO-ligase working with a particular StUbL. D) Genetic interactions of RAD5, MMS2, 

UBC13 encoding a poly-ubiquitin ligase complex with BRE5 and UBP3 (deubiquitinases, DUB) 

[7,15], as well as with DOA1 and RPN6, which encode proteins involved in protein degradation 

[10,16]. Rad6-Rad18 monoubiquitin ligase primes PCNA for polyubiquitination by Rad5-Mms2-

Ubc13 [17]. Potentially other substrates are involved as well or different priming monoubiquitin 
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ligases. It is interesting to note that RAD5, MMS2, and UBC13 show negative genetic interactions 

with two different ubiquitin proteases (DUB), Bre5 and Ubp3 [10,16], possibly indicating the 

involvement of different toxic intermediates. Instead of reversing the toxic intermediate by de-

ubiquitylation, it is also possible that the intermediate is degraded, and we note that RAD5, 

MMS2, and UBC13 show a consistent negative interaction with DOA1 and RPN6, which are 

involved in protein degradation [7,15] (see Figure 8F). The different negative interactions of the 

Rad5-Mms2-Ubc13 polyubiquitin ligase may suggest that different toxic intermediates 

accumulate depending on the particular DUB or protein degradation adaptor and may help 

identify them. 
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Section S1 

Mechanism of recombination and single pathway synthetic lethal interactions. 

Homologous recombination (HR) is an important mechanism to maintain genome integrity [1]. 

HR plays a fundamental role in meiosis generating genetic diversity and ensuring accurate 

chromosome segregation. HR is a central DNA repair pathway of complex DNA damage such as 

double-stranded breaks (DSB), interstrand crosslinks (ICL), and single-stranded DNA gaps. The 

stalling or collapse of replication forks requires HR to complete DNA synthesis during S-phase in 

cycling cells. HR is of particular importance in cancer biology for its dual significance in tumor 

suppression and cancer therapy [2]. Key HR factors, such as BRCA1, BRCA2, RAD51C, and 

BLM, have been identified as tumor suppressors (Table S1). Moreover, induction of DNA 

damage in cancer therapy by ionizing radiation (IR), interstrand crosslinks, topoisomerase 

inhibitors and alkylating agents leads to DNA damage that are HR substrates.  

 

The key reaction of HR is homology search and DNA strand invasion catalyzed by the Rad51-

ssDNA filament (Figure S1 in Text S1) [1]. In order to assemble Rad51-ssDNA filaments, the 

DNA damage (DSB or gaps) must be processed to reveal ssDNA of sufficient length. The 

eukaryotic ssDNA binding protein RPA immediately covers available ssDNA, and mediator 

proteins such as the Rad51 paralogs Rad55-Rad57 and Rad52 in yeast (Rad51B/C/D, XRCC2/3, 

BRCA2 in humans) are required for Rad51-ssDNA filament formation. After strand invasion, 

Rad54 is required to turnover the Rad51-dsDNA product complex to allow access by DNA 

polymerases to the 3’-end of the invading strand. The ensuing DNA synthesis restores the 

missing DNA leading to the formation of junction intermediates that require either one of two 

pathways for processing to repaired end products. One pathway, double Holliday junction 
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dissolution, involves the helicase Sgs1 (human BLM) in association with the type 1A 

topoisomerase Top3 (human TOPOIIIα) and the specificity factor Rmi1 (human RMI1/2). The 

second pathway involves cleavage of junction molecules and is defined by the endonuclease 

Mus81-Mms4 (human MUS81-EME1) [3]. Hence, the recombination pathway bifurcates in this 

last step into two pathways, one Sgs1/BLM-dependent, the other Mus81-dependent (Figure S1 in 

Text S1).   

 

While the above discussion summarizes accurately the forward reactions in the HR pathway, it 

has become clear that dedicated motor proteins and DNA helicases catalyze specific backwards 

reactions that either antagonize recombinational repair outright or channel intermediates into 

specific sub-pathways (Figure S1 in Text S1). The paradigm for an anti-recombinase is the 

Saccharomyces cerevisiae Srs2 helicase, which serves to repress recombination [4-6]. 

Biochemical analysis uncovered a satisfying mechanism for anti-recombination by showing that 

Srs2 dissociates Rad51 from ssDNA [7,8]. Candidates for equivalent activities in humans are 

FBH1, FANCJ, and RECQ5 [9-11]. This identifies the Rad51-ssDNA filament as a reversible 

intermediate in recombination (Figure S1 in Text S1, corresponds to I in Figure 2). Another 

reversible intermediate is the D-loop (Figure S1 in Text S1, corresponds to I in Figure 2), which 

is formed by the Rad51-ssDNA filament and dissociated by the Mph1 protein [12] and possibly 

Sgs1 [13-15]. In humans, FANCM and RTEL1 exhibit such an activity [16,17]. D-loop reversal 

is anti-recombinogenic per se. However, reversion of an extended D-loop (Figure S1 in Text S1 

after DNA synthesis from the invading strand) does not prevent recombination, but channels 

recombination to the synthesis-dependent strand annealing (SDSA) pathway, which always lead 

to a non-crossover outcome. In fact, mutations in RTEL1 show the expected increase crossover 



 

 18 

formation during Caenorhabditis elegans meiosis [18]. Thus the extended D-loop could be 

viewed as a reversible intermediate, but the reaction could equally be a direct forward step to 

SDSA (Figure S1 in Text S1, corresponds to P in Figure 2). 

 

Synthetic lethality between various single gene mutations within the recombinational DNA repair 

pathway has been observed in budding yeast. Of particular interest are cases where the synthetic 

lethality was demonstrated to be recombination-dependent, meaning the synthetic lethality was 

suppressed by a third mutation disabling an early stage of the recombination pathway. Examples 

include the following double mutants: srs2 rad54, mph1 mus81 or mph1 mms4, srs2 sgs1 [19-24], 

and the synthetic lethal interaction between mus81 or mms4 and sgs1 or top3 or rmi1 in yeast [25] 

with similar observations being reported in Drosophila [26]. The recombination-dependent 

synthetic lethality involving Sgs1 are more complex, because of the multiple roles of Sgs1-Top3-

Rmi1 in DSB repair including DSB resection, joint molecule disruption, and double Holliday 

junction dissolution (Figure S1 in Text S1) [27]. Both Mus81-Mms4 and the Sgs1-Top3-Rmi1 

complex function in the processing of late recombination intermediates (Figure S1 in Text S1), 

the genetic situation resembles within-pathway synthetic lethality involving parallel forward 

pathways (Figure 2B2). In this case, the recombination pathway bifurcates into alternate routes of 

product formation (Figure S1 in Text S1). The twist is that a complete recombination defect in 

yeast is not lethal per se, suggesting that toxic intermediates, accumulating in the double mutant, 

cause lethality. Alternatively, the role of Sgs1 in disrupting joint molecules [13-15] could be the 

cause for the synthetic lethality with mus81 [25], which would conform to the mechanism of 

within-reversible-pathway synthetic lethality. Likewise, it is unclear which role of Sgs1 leads to 

its synthetic lethality with Srs2, D-loop disruption or double Holliday junction dissolution. The 
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role of Sgs1 in DSB resection is quite redundant with other helicases and nucleases [28,29], and 

this function does not appear to limit recombinational repair, as suppression of late defects in for 

example Rad54, Mus81-Mms4 would have been expected by mutations in Sgs1.  
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Section S2 

A. Description and analysis of the simplest mathematical model of a pathway with 

reversible steps and a toxic intermediate.  

In the mathematical description of the simplest DNA repair model, there are five kinetic rates 

(two kinetic constants k1 and k-1 of forward and backward reactions for the step S↔I, two kinetic 

constants k2 and k-2 of forward and backward reactions for the step I↔P and the kinetic constant 

k3 of the compensatory step S→P) which completely define the dynamic properties of the model, 

i.e. its steady state values and the history of relaxation of the model variable values from the 

initial condition towards the equilibrium values. For simplicity, we assume all state transition 

rates in the model (Figure 3) to be linearly dependent on the dynamic variables [S], [I] and [P], 

where square brackets denote the probability of the corresponding molecular state (a number 

between 0 and 1). The following system of equations describes the time evolution of the model 

system: 
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where [S], [I] and [P] are assumed to be functions of time. Initially the DNA is assumed to be in 

its damaged state: 

S(0) = 1.0, I(0) = 0.0, P(0) = 0.0        (2) 

During time evolution, the probability to find the damaged DNA locus in one of the three states is 

S(t), I(t), P(t), and S(t)+I(t)+P(t) = 1.0 at any moment of time.  



 

 22 

Let us formulate the conditions on cellular viability. We assume that the cell can tolerate 

unrepaired DNA damage above a certain threshold [S]leth∈[0;1] only for a limited amount of time 

Tdam otherwise it loses viability. Let us also assume that the intermediate I is toxic for the cell and 

when its probability [I] remains higher than some threshold value [I]tox∈[0;1] for a sufficiently 

long time period Ttox then the cell dies because of toxic stress.  

 

Analysis of the steady state solution and cell viability conditions. The system (1) is sufficiently 

simple that it allows explicit analytical solution in a closed form. The steady state solution of (1) 

is 

A
kkkkk

P
A
kkk

I
A
kk

S sss )(
,
)(

, 1231231221 −−−− ++
=

+
== ,      (3) 

where 2121123312 )()( −−−− +++++= kkkkkkkkkkA . 

In our interpretation of synthetic interactions, the incomplete knock-down of one of the enzymes 

F1, F2, R1, R2, or EC (Figure 3) is modeled by setting the corresponding kinetic rate constant ki 

small but not to zero: 0≠ik , while the complete knock-out is modeled by setting the 

corresponding rate constant to zero 0=ik . Technically, the difference between even infinitely 

small values of kinetic rates and zero values in the model analysis is the following. Introducing a 

zero parameter can qualitatively change the type of the steady state solution. Hence, some 

conclusions about the effect of knocking down enzymes can be derived from the analytical 

treatment of the steady state. If instead of zero values, arbitrarily small kinetic rates are used, then 

it might create very long relaxation times towards the steady state. If the relaxation time is very 

long then it is equivalent to the existence of a “metastable” state of the system from the point of 
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view of practical interpretation of the results. Hence, using very small kinetic rates requires 

studying the dynamics of the system and comparing the relaxation times with the time of the 

experiment or duration of the relevant physiological process. For example, synthetic interaction 

between mutations in R1 and F2 can be deduced from the analytical analysis of the steady state 

by simultaneously setting 01 =−k and 02 =k , because it traps a toxic intermediate state. If we set 

1−k and 2k to very small values but not to zero, the steady state can correspond to a viable state 

but the kinetics of DNA repair can be so slow that in practice it will lead to cell death on the way 

to this steady state. 

 

Simple analysis shows that it is not possible to set to zero the denominator A by placing to zero 

any single or a couple of kis. Hence, this solution is applicable for all single and double mutants 

in the model. However, there exist triple mutants for which this solution should be modified (for 

example, if 0131 ===− kkk  then A=0). We will not consider triple mutants in our analysis. 

 

The general solution (3) includes one particular case when the compensatory pathway is much 

faster than the S → I → P cascade itself. Hence, DNA is repaired practically only through the 

compensatory pathway. In mathematical terms this corresponds to the case 13 kk >> . In our 

numerical simulations we will consider that the compensatory pathway is relatively slow, 

hence 31 kk >> . This will always be correct except for the F1↓ mutation ( 01 ≅k ), which should 

be treated separately. The requirement of a relatively slow compensatory pathway is not essential 

for most of our conclusions (see the parametric study in Figure 5). In particular, the kinetic 



 

 24 

trapping mechanism due to inactivation of the second forward reaction (F2) and first backwards 

reaction (R1) (Figure 3) is always valid, although there could be a kinetic difference in the 

accumulation of the toxic intermediate.  

 

Let us introduce notations for the relative speed of the compensatory pathway 3r , 

forward/backward rate ratios 1r  and 2r  for the reactions 1 and 2, and the ratio of backward rates 

br  : 
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Then, from (3) we can formulate the steady-state cell viability conditions with respect to toxicity 

(i.e., Is < [I]tox) and DNA damage (Ss<[S]leth): 
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From these conditions it follows qualitatively that for cell death from toxicity, three requirements 

should be satisfied simultaneously: 11 >>r and 12 <<r  and 
tox

tox
b I

Irr
][
][1

3
−

< . 

For cell death from unrepaired DNA damage it is enough that . 

When the DNA repair pathway functions normally, we assume that both the S → I and I → P 

reactions are more efficient in the forward direction. In mathematical language, this is formulated 

as 11 >>r , 12 >>r .  
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B. Conditions for various cellular fates in the toy model 

The five kinetic rates of the model can be grouped into three control parameters, r1, r2 and brr ×3 , 

determining the cell viability (see (5) and (6)). Depending on whether they are large or small, the 

pathway can be found in one of the following states: Normal Robust (state NR), Normal Fragile 

(state NF), Compensated (state C), death due to DNA Damage (state DD) and Death due to Toxic 

intermediates (state DT) (Figure 4). The most sensitive parameter is the forward/backward rate 

ratio for the reaction I↔P, 
2

2
2

−
≡
k
kr . From Figure 4 and Figure 5 it follows that the pathway can 

function in the normal mode only if r2 is sufficiently large. For example, eliminating the forward 

reaction (putting k2 = 0) makes this ratio equal to zero, which prevents the pathway from normal 

functioning and may produce accumulation of toxic intermediates or unresolved DNA damage.   

 

The second most important parameter is a complex combination of kinetic rate parameters 

2

1

1

3
3

−

−×≡×
k
k

k
krr b . Since we assume that the compensatory pathway is relatively slow and 

1
1

3
3 <<≡

k

k
r  then the product brr ×3  can be large only if 11
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1 >>>>≡
−

−

rk
krb .  In the case of a large 

br , the cell has a possibility to be rescued by a compensatory pathway (state C, Figure 4). 

 

The mathematical model predicts that the normal functioning of the pathway can proceed in two 

distinct modes: a more robust NR (large brr ×3 ) state or a more fragile NF state (small brr ×3 ). In 
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the normal fragile state NF, one single null mutation disrupting the pathway at the downstream 

I↔P step (single deletion of F2, Figure 6, row 8 and Figure S4 in Text S1) can lead to lethal 

consequences. In the normal robust state NR, the cell can resist to disruption of the I↔P step by 

utilizing the compensatory path and switching to the compensated state C (Figure 6, row 7 and 

Figure S4 in Text S1).  

We define that if in the steady state it is more probable to find the system in the toxic 

intermediate state than in any other states then it causes cell death due to the toxic stress (state 

DT). If in the steady state it is more probable to find the systems in the unresolved DNA damage 

state then cell death is due to DNA damage (state DD). The forward/backward rate ratio 
1

1
1

−
≡
k
kr  

for the reaction S↔I plays a role in determining the cell fate between the death from unrepaired 

DNA damage (state DD) or from toxic amounts of DNA repair intermediates (state DT, Figure 

4). In each context, there is a minimal rate 1r
 
needed for cell viability. The dependence of 

pathway states on the values of the control parameters is summarized in Figures 4 and 5.  
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Section S3 

Normal pathway functioning does not require step reversibility. From the steady-state solution of 

the mathematical model it follows that the steady-state amount of repaired DNA [P] in the 

absence of the reverse reaction P → I ( 02 =−k ) should be equal to 1.0, which means perfect 

DNA repair. If both forward reactions are much faster than the backward reactions  

( 2121 ,, −−>> kkkk ) then the amount of unrepaired DNA is 0][1
2

2 ≈≈− −

k

k
P , i.e. it does not 

depend on the backward rate constant of the reaction I → S. Hence, the efficiency of DNA repair 

depends very little on the rate of backward reactions unless they are much faster than the rates of 

the forward reactions. Moreover, theoretically the absence of reversibility of the reaction I → P 

causes no DNA repair defect.  

 

Disruption of the DNA repair pathway at downstream step can lead to lethality from toxicity. 

From Figure 4 it follows that the normal functioning of the DNA repair pathway corresponds to 

the right column with both upper and bottom rows being possible. The bottom row corresponds to 

the situation when the backward rate of the first reaction S → I is much faster than the backward 

rate of the I → P reaction ( 1/ 21 >>−− kk ). Let us denote it as mode normal robust (NR). The 

upper row situation is implemented when these rates are comparable or the first is smaller than 

the second ( 21 −− ≤ kk ). This is denoted as normal fragile (NF).  
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Single gene knock-out or over-expression can change one or two of the ratios 321 ,, rrr , br (for 

example, eliminating F1 affects both 1r  and 3r ). Hence, it corresponds to the change of a cell 

shown in the Figure 4. As a result, changing cell fate from survival to death by changing the 

activity of a single enzyme is possible in both the NR and NF states by changing the 2r ratio. This 

is possible by either disrupting the downstream forward step ( 02 =k , knocking-out F2) or 

significantly increasing the backward rate ( 22 kk >>− , over-expression of R2). The latter is the 

only option for the NR state because knocking-out F2 in the NR state does not affect the brr ×3  

product and leads only to the C state (in which DNA is only partially repaired, see Figure 6, row 

7).  

 

Certain synthetic gene interactions can be lethal. Changing the activities of a couple of enzymes 

can change the system state from NR or NF to the state C or the lethal states DD, DT. There are 

several possibilities. Notice that one of the mutations should necessarily affect the 2r ratio from 

large to small, i.e. either knocking-down F2 or over-expressing R2. In the NF state this is already 

sufficient to provide lethal accumulation of toxic intermediate (DT state), see Figure 6, row 8. In 

the NR state, the second mutation should affect the brr ×3 product changing it from large to small. 

There are three possibilities: 1) knocking-down the compensatory pathway by removing EC, see 

Figure 6, row 4; 2) over-expressing F1, see Figure 6, row 13; 3) knocking-down R1 or 

overexpressing R2, see Figure 6, row 11. 
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Section S4 

SBTOOLBOX description of the mathematical model used for numerical simulations in Matlab 

environment 

********** MODEL NAME 

Synthetic lethality in one pathway 

********** MODEL STATES 

d/dt(D) = -R1-R3  

d/dt(I) = R1-R2  

d/dt(R) = R2+R3  

D(0) = 1 

I(0) = 0 

R(0) = 0 

********** MODEL PARAMETERS 

k1f = 10  

k1b = 1 

k2f = 5  

k2b = 0.1 

k3 = 2  

********** MODEL VARIABLES 
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********** MODEL REACTIONS 

R1 = k1f*D-k1b*I 

R2 = k2f*I-k2b*R 

R3 = k3*D 

********** MODEL FUNCTIONS 
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Protein Cancer type Reference 

BRCA1 Breast, ovarian, colon, prostate [1,2] 

BRCA2 Breast, prostate, ovarian, lung, 

bladder, cervical 

[3-9]  

RAD51 Breast, bladder, pancreatic [10-13] 

RAD51B Breast [14] 

RAD51C Breast, ovarian  [15-18] 

RAD51D Breast [19] 

XRCC2/XRCC3 Breast, lung, bladder, colorectal, 

ovarian, pancreatic, thyroid 

[20-26] 

RAD54 Pancreatic, colorectal, breast, 

cervical 

[27-29] 

RAD54B Colon, lymphoma [30] 

BLM Colorectal, lymphoma, bladder, 

breast, lung 

[31-36] 

FANCJ Breast, bladder, lung [37-39] 

FANCM Breast, pancreatic [38,40] 

RTEL1 Glioma [41,42] 

MUS81 Lymphoma, gastric, breast [29,43-45] 

EME1 Glioma [46] 

POLH Breast, melanoma, bladder [18,47,48] 
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Table S1. Involvement of HR proteins in cancer. Information extracted from Atlas of Genetics 

and Cytogenetics in Oncology and Haematology (http://atlasgeneticsoncology.org/), Genetic 

Association Database (http://geneticassociationdb.nih.gov), and the literature.  
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