Iterative procedure for optimal superimposition of ensembles of structures

The procedure consists of the following steps: (i) First, each structure in the ensemble is pairwise superposed onto a randomly selected reference structure using the Kabsch algorithm [1]. (ii) An average set of coordinates is calculated for the superposed set obtained in (i), referred to as the 'average model', (iii) all structures are pairwise superposed on the newly generated 'average model' using the Kabsch algorithm, (iv) steps (ii)-(iii) are repeated until the average model generated in two successive iterations changes by less than the threshold RMSD of $0.001 \AA$. The present superposition method ensures that the structures do not undergo rigid body translational and rotational motions, and allow for direct comparison of the deformation vectors with the ANM eigenvectors describe purely internal motions. This method is used both in PCA of structures and EDA of MD trajectories.

MD simulation details for PTP

System was prepared using PSFGEN, Solvate and AutoIonize plugins of VMD [2]. Solvation box padding distance was set to $6 \AA$ along each direction. Four chloride ions were added to neutralize the system. System was energy minimized for 2000 steps, and equilibrated for 60 ps prior to productive run. Equilibration started at 100 K and the temperature was raised to 300 K in the first 20 ps at increments of $10 \mathrm{~K} / \mathrm{ps}$. During equilibration, protein heavy atoms were constrained using harmonic potential with force constant of $0.5 \mathrm{kcal} / \mathrm{mol}$. In equilibration and productive simulation, the cutoff distance was set to $10 \AA$, all bonds with hydrogen atoms were fixed and integration time step of 2 fs was used.

Calculation of the covariance matrix (from experimental structures, MD snapshots and ANM modes)

The covariance matrix \mathbf{C} is a $3 N \times 3 N$ matrix for a protein of N residues (with known coordinates), which may be written in terms of a set of $N \mathrm{x} N$ submatrices $\boldsymbol{C}^{(i j)}(1 \leq i, j \leq$ N), each of size 3×3

$$
\mathbf{C}^{(i j)}=\left[\begin{array}{lll}
\left\langle\Delta x_{i} \Delta x_{j}\right\rangle & \left\langle\Delta x_{i} \Delta y_{j}\right\rangle & \left\langle\Delta x_{i} \Delta z_{j}\right\rangle \tag{2}\\
\left\langle\Delta y_{i} \Delta x_{j}\right\rangle & \left\langle\Delta y_{i} \Delta y_{j}\right\rangle & \left\langle\Delta y_{i} \Delta z_{j}\right\rangle \\
\left\langle\Delta z_{i} \Delta x_{j}\right\rangle & \left\langle\Delta z_{i} \Delta y_{j}\right\rangle & \left\langle\Delta z_{i} \Delta z_{j}\right\rangle
\end{array}\right]
$$

Here $\left\langle\Delta x_{i} \Delta y_{j}\right\rangle$ represents the cross correlation between (i) the X-component of the fluctuation vector $\Delta \boldsymbol{R}_{i}{ }^{\mathrm{s}}$ representing the departure of the $i^{\text {th }}$ residue from its mean position, and (ii) the Y-component of $\Delta \boldsymbol{R}_{j}^{\mathrm{s}}$ representing the departure of the $j^{\text {th }}$ residue from its mean position, averaged over all structures $(1 \leq s \leq m)$ in the examined dataset. The sum of the diagonal elements of $\boldsymbol{C}^{(i j)}$ gives the cross-correlations between the fluctuations of residues i and j as $\operatorname{tr}\left\{\boldsymbol{C}^{(i j)}\right\}=\left\langle\Delta \boldsymbol{R}_{i} \cdot \Delta \boldsymbol{R}_{j}\right\rangle$, and the $i^{\text {th }}$ diagonal block gives the mean-square fluctuations of residue i, i.e., $\operatorname{tr}\left\{\boldsymbol{C}^{(i i)}\right\}=\left\langle\left(\Delta \boldsymbol{R}_{i}\right)^{2}\right\rangle$.

Table. S1. PDB structure datasets of the enzymes.

Enzyme	PDB codes						
M.HhaI	10 mh	1 fjx	1hmy	1 m 0 e	1 mht	1skm	2 c 7 o
	2c7p	2 c 7 q	2 c 7 r	2hmy (0)	2hr1	2i9k	2uyh
	2 yyc	2uz4	2z6a	$2 \mathrm{z6q}$	2z6u	2zcj	3 eeo
	3mht (C)	4 mht	5 mht	6 mht	7 mht	8 mht	9 mht
β 1,4-Galactosyltransferase	1fgx (0)	1 fr 8	$1 \mathrm{nf5}$	1 nhe	1nkh (C)	1 nmm	1 nqi
	1 nwg	100r	1023	1 oqm	1 pzt	1pzy	1tvy
	1tw1	1tw5	1 yro	2 fyc	2 fyd		
L-lactate dehydrogenase	3d0o (O)	3d4p (C)					
OMP decarboxylase	1dqw	1dqx	3 gdk (O)	3gdl (C)	3 gdm	3 gdr	3 gdt
3-dehydroquinase	1gqn (O)	119w (C)					
Biphosphate aldoase	3c4u (0)	3 c 52 (C)					
TIM	1 ppq	1 sq 7	1 ssd	1ssg	1 su 5	1sw0	1sw3
	1sw7	1tpb	1 tpe	1tph (C)	1tpu	1tpv	1tpw
	8tim (0)						
PTP	11 yv	1 pa 9	1qz0	1xxp	1 xxv	1ypt (0)	1 ytn
	1yts (C)	1 ytw	2 i 42	3 blt	3blu	3bm8	$3 \mathrm{f99}$
	3f9a	3f9b					
Enolase	1 ebg	1 ebh	1 els	118p	1 nel	1 one	1p43
	1 p 48	$2 \mathrm{al1}$	$2 \mathrm{al2}$	2 xgz	2 xh 0	2 xh 2	2xh4
	2 xh 7	2one	3enl (0)	4 enl	5 enl	6 enl	7enl (C)
Pyruvate mutase	1m1b (C)	1 pym	1s2t (O)	1s2u	1s2v		

Table S2. Fraction of variance for PCA of overall structure and loop region of enzymes.

	Overall structure			Loop region		
M.HhaI	PC1	PC2	PC3	PC1	PC2	PC3
β 1,4-Galactosyltransferase	0.90	0.08	0.01	0.99	0.00	0.00
OMP decarboxylase	0.90	0.06	0.01	0.95	0.04	0.01
TIM	0.71	0.26	0.03	0.87	0.12	0.01
PTP	0.52	0.24	0.11	0.85	0.07	0.03
Enolase	0.53	0.15	0.09	0.94	0.02	0.02
Pyruvate mutase	0.64	0.10	0.07	0.94	0.02	0.01

Reference List

1. Kabsch W (1976) A solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 32: 922-923.
2. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14: 33-38.
