Skip to main content
Advertisement

< Back to Article

Cellularly-Driven Differences in Network Synchronization Propensity Are Differentially Modulated by Firing Frequency

Figure 10

Differential effects of frequency modulation upon synchronization in stochastically-driven cortical pyramidal cell networks.

(A,B) Differences in bursting parameter B between high- and low-frequency networks as a function of synaptic weight and the re-wiring parameter for (A) Type I and (B) Type II networks. For Type I networks, and corresponded to high- and low-frequency networks, respectively, while for Type II networks, and corresponded to high- and low-frequency networks, respectively. (C,D) Values of the bursting parameter as a function of the re-wiring parameter for four different values of , with synaptic coupling fixed at in (C) and in (D). The circled regions in plots (A) and (B) were constructed by taking the difference between the highest- and lowest-frequency data points in (C) and (D). (E,F) Differences in MPC between high- and low-frequency networks as a function of synaptic weight and the re-wiring parameter for Type I and Type II networks. (G,H) Values of the MPC for four different values of , with synaptic coupling fixed at in (G) and in (H). The circled regions in plots (E) and (F) were constructed by taking the difference between the highest- and lowest-frequency data points in (G) and (H). Line colors in plots (G) and (H) correspond to the same legend as in plots (C) and (D), respectively.

Figure 10

doi: https://doi.org/10.1371/journal.pcbi.1002062.g010